Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
109
Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?
Задачу решили:
44
всего попыток:
170
Сколько существует таких целых чисел 0<n<90, что tg(n°) можно выразить с помощью конечного количества квадратных корней (например n=30, 45, 60)?
Задачу решили:
46
всего попыток:
77
Дан треугольник ABC. Радиус окружности, касающей стороны AB и продолжений сторон AC и BC равен 78. Радиус окружности, касающей стороны AC и продолжений сторон AB и BC равен 91. Радиус окружности, касающей стороны BC и продолжений сторон AB и AC равен 102. Чему равна площадь треугольника ABC?
Задачу решили:
42
всего попыток:
56
В треугольнике ABC обозначим длины сторон: |AB|=c |BC|=a |CA|=b Дано: a+b+c = 1000000 (a-b+c)tg(B/2) = 2 Чему равна площадь треугольника?
Задачу решили:
23
всего попыток:
74
Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).
Задачу решили:
35
всего попыток:
64
Длины сторон треугольника ABC равны: |AB| = 43 |AC| = 45 |BC| = 4 Точка O - центр окружности описанной около треугоьника ABC. Точка Q - центр окружности описанной около треугоьника, вершины которого - середины сторон треугольника ABC. D и E - точки на прямой BC. Отрезки OD и QE перпендикулярны прямой BC. Найдите длину отрезка DE.
Задачу решили:
37
всего попыток:
101
Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n. Найдите сумму всех натуральных чисел n, для которых φ(n)=128.
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
23
всего попыток:
117
Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.
Задачу решили:
30
всего попыток:
61
Найдите количество пар действительных чисел b и c таких, что оба уравнения x3+bx2+cx+10=0 и y3+(b+21)y2+(14b+c+147)y+(49b+7c+353)=0 имеют по три различных целых корня.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|