Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
552
всего попыток:
590
Число а сложили с самим собой и получили число b. Потом число a умножили само на себя и получили число c. У числа b переставили цифры и получили число d. Когда перемножили c и d, то получилось 2009. Чему же равно a?
Задачу решили:
421
всего попыток:
655
В ряд выписаны числа: 1, 2, 3, 4, 5, 6. За один ход разрешается либо прибавить к любым двум числам по единице, либо отнять от любых двух чисел по единице. За какое минимальное число ходов можно получить строку из одних пятёрок? Если Вы считаете, что это невозможно, то введите 0.
Задачу решили:
178
всего попыток:
391
Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!
Задачу решили:
589
всего попыток:
697
"Как-то в 2007 году, — вспоминает Вовочка, — я выписал подряд все свои оценки по пению, полученные в четверти, и между некоторыми из них поставил знак умножения. Когда я перемножил числа, то получил в произведении 2007. Помню, что оценки "единица" не было. Как вы думаете, что мне поставили по пению в той четверти?" Дробных оценок в четверти не бывает!
Задачу решили:
277
всего попыток:
480
Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
78
всего попыток:
241
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом, а p — его основанием. А как близко друг к другу могут находиться два квартета, т.е. чему равно минимальное значение p−q, где p>q>5 — основания двух квартетов?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|