Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
15
В числовом ребусе ДРА + КОН + ЗМЕЯ = 2024 + 2025 разным буквам соответствуют разными цифры. Сколько решений имеет ребус? Задача требует подробного решения.
Задачу решили:
10
всего попыток:
15
Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки равна 12,5 единичных квадратов (см. рисунок). Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке?
Задачу решили:
19
всего попыток:
21
В числовом ребусе
Задачу решили:
12
всего попыток:
14
В целочисленном параллелограмме пересечения биссектрис внутренних углов определяют вершины четырёхугольника, ни одна точка которого не находится вне параллелограмма. Сколько существует таких параллелограммов, если известно, что одна из его сторон равна 135, а углы кратны 9 градусам?
Задачу решили:
14
всего попыток:
17
Простые числа p, q такие, что (p + q)/2 и (p - q)/2 тоже простые. Чему равна наибольшая сумма p, q, (p + q)/2, (p - q)/2?
Задачу решили:
12
всего попыток:
37
Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 змейкой так, как показано на рисунке. Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех возможных чисел, отмеченных звёздочкой.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|