img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 17
всего попыток: 22
Задача опубликована: 20.06.25 08:00
Прислал: avilow img
Источник: ЕГЭ 2025
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Плоскость α перпендикулярна плоскости основания ABCD правильной четырехугольной пирамиды SABCD и пересекает ребро SA в точке K. Сечение пирамиды плоскостью α является правильным треугольником площадью 4√3. В каком отношении точка K делит ребро SA, считая от вершины S, если объем пирамиды равен 18√3?

Задачу решили: 17
всего попыток: 20
Задача опубликована: 09.07.25 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish

Из спичек сложена фигура «правильной шестиугольной» формы, при этом спички образуют белые и зеленые треугольники. На рисунке приведена одна из таких фигур, у которой на стороне три белых треугольника.

Спички и треугольники

Она сложена из 57 спичек, которые образуют 43 белых и зеленых треугольников. Сколько спичек потребуется, чтобы сложить такую фигуру, в которой 1333 белых и зеленых треугольников суммарно.

Задачу решили: 18
всего попыток: 24
Задача опубликована: 21.07.25 10:03
Прислал: avilow img
Источник: По мотивам задач студенческих олимпиад
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish

В каждой из двух футбольных командах «МАКСИ» и «МИНИ» по одиннадцать игроков, которые надели майки с номерами от 1 до 11. Тренеры обоих команд построили игроков своих команд в круг. Каждый тренер перемножил номера соседних футболистов своего круга, и сложил полученные 11 произведений. При этом у тренера команды «МАКСИ» получилась наибольшая возможная сумма S, а у тренера команды «МИНИ» получилась наименьшая возможная сумма s. Найдите разность S – s и укажите её в ответе.

Задачу решили: 14
всего попыток: 15
Задача опубликована: 30.07.25 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish

Найдите n-угольник, который можно разрезать на пять частей так, что из пяти полученных частей можно сложить:

а) один квадрат;

б) два квадрата;

в) три квадрата;

г) четыре квадрата;

д) пять квадратов.

Уточним, n-угольник во всех случаях один и тот же, способы разрезания могут отличаться и получаемые при этом квадраты не обязательно равные. В ответе укажите наименьшее n.

Задачу решили: 16
всего попыток: 25
Задача опубликована: 18.08.25 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Две равные окружности с центрами O1 и O2 расположены так, что центр одной из них лежит на другой окружности, точки A и B - общие точки этих окружностей. На бо́льшей дуге AB окружности с центром O2 отмечена точка M так, что |AM| = 33√3 и |BM| = 3√3. Найдите расстояние между точками O1 и M.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.