img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 351
всего попыток: 404
Задача опубликована: 21.06.09 00:27
Прислал: demiurgos img
Источник: ЕГЭ
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Сколько квадратных сантиметров составляет площадь равнобедренной трапеции, если длина её средней линии равна 21 см, а диагонали — 29 см?

Задачу решили: 228
всего попыток: 410
Задача опубликована: 21.06.09 23:21
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

Найдите трёхзначное число, имеющее наибольшее число различных делителей.

Задачу решили: 147
всего попыток: 205
Задача опубликована: 08.07.09 00:31
Прислал: demiurgos img
Источник: А.К.Толпыго "1000 задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.

Задачу решили: 89
всего попыток: 280
Задача опубликована: 31.07.09 13:58
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sweetale

На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?

Задачу решили: 75
всего попыток: 682
Задача опубликована: 10.08.09 15:49
Прислал: demiurgos img
Источник: Всесоюзная олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?

Задачу решили: 226
всего попыток: 562
Задача опубликована: 21.08.09 16:29
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

– А у тебя дети есть?

– Три дочери.

– Сколько им лет?

– Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже.

– Этой информации мне недостаточно...

– А если сложить, то получится сегодняшнее число.

Поразмыслив:

– И этой информации мне недостаточно...

– Средняя похожа на меня.

– Вот теперь я знаю ответ на свой вопрос.

Сколько лет средней дочери?

Задачу решили: 87
всего попыток: 212
Задача опубликована: 01.09.09 15:22
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.

(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили: 82
всего попыток: 99
Задача опубликована: 16.09.09 08:29
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник.

Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.

Задачу решили: 51
всего попыток: 131
Задача опубликована: 19.09.09 00:06
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В парке оборудовано n остановок для детских паровозиков. У каждого паровозика свой маршрут, состоящий из нескольких (необязательно всех) остановок. От каждой остановки до любой другой можно доехать без пересадки, но только на одном паровозике. С каждого паровозика можно пересесть на любой другой, доехав до нужной остановки. Имеется паровозик, чей маршрут состоит ровно из трёх остановок. Найдите максимально возможное значение n.

Задачу решили: 111
всего попыток: 499
Задача опубликована: 24.09.09 11:33
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

На блюде лежат 30 конфет различных сортов. Можно выбрать несколько сортов и съесть одно и то же количество конфет каждого выбранного сорта. Какое максимальное число конфет Вам гарантированно удастся съесть? (Независимо от того, сколько конфет и каких сортов лежит на блюде.) 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.