Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
386
всего попыток:
1340
При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?
Задачу решили:
764
всего попыток:
1940
В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?
Задачу решили:
655
всего попыток:
2445
В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?
Задачу решили:
677
всего попыток:
1803
На каждом километре шоссе, соединяющего города А и Б стоит столбик с табличкой, на одной стороне которой написано, сколько километров до А, на другой — до Б. Известно, что на каждом столбике сумма всех цифр равна 17. Какова длина шоссе?
Задачу решили:
728
всего попыток:
1303
11 человек пришли в гости в галошах. Уходили они по одному, и каждый спьяну надевал первую попавшуюся пару галош, в которую мог влезть (т.е. не меньшего размера, чем его собственная). Каково наибольшее число гостей, которые не смогли надеть галоши?
Задачу решили:
871
всего попыток:
2193
Среди 11 таблеток есть одна поддельная, которая отличается от настоящих только массой, но в какую сторону и насколько — неизвестно. За какое минимальное число взвешиваний таблеток на чашечных весах без гирь можно определить, какая таблетка тяжелее — поддельная или настоящая?
Задачу решили:
527
всего попыток:
1231
Расписание движения требует от водителя междугороднего автобуса, чтобы он проезжал ровно 60 км за любой промежуток времени длительностью ровно 1 час (т.е. в любой момент времени после первого часа своего пути автобус должен быть на расстоянии 60 км от того места, где был час назад). Какое максимальное расстояние сможет проехать автобус за 2 часа 50 минут, если водитель будет строго придерживаться расписания? (Ответ выразите в км, единицы измерения не указывайте.)
Задачу решили:
164
всего попыток:
717
Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый. Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)
Задачу решили:
195
всего попыток:
940
В шляпе лежат 5 карточек: у одной обе стороны красные, у другой обе стороны чёрные, а у каждой из трёх остальных одна сторона красная, а другая чёрная. Все стороны всех карточек можно отличить друг от друга только по цвету. Закрываем глаза, наудачу вытаскиваем одну карточку и кладём её на стол. Открываем глаза и видим, что её верхняя сторона — красная. Сколько процентов составляет вероятность, что её нижняя сторона — тоже красная?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|