Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
128
всего попыток:
157
В треугольнике медианы и перпендикулярны. Найдите , если и .
Задачу решили:
61
всего попыток:
204
В оранжерее на космической станции в виде прямоугольника 20×30 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 600 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Задачу решили:
85
всего попыток:
101
Внутри треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и AC на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 29, 27 и 24. Найдите радиус окружности, вписанной в треугольник ABC.
Задачу решили:
101
всего попыток:
137
Саша бросил монету 21 раз, а Володя — только 20. Найдите вероятность того, что у Саши выпало больше орлов, чем у Володи.
Задачу решили:
88
всего попыток:
111
Пусть — многочлен от переменной с чётными целыми коэффициентами, и — такие целые числа, что . Найдите наибольшее возможное значение разности .
Задачу решили:
101
всего попыток:
154
На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4, BC=8 и CD=13. Найдите площадь четырёхугольника ABCD.
Задачу решили:
64
всего попыток:
99
Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x.
Задачу решили:
65
всего попыток:
100
Вписанный в окружность 2011-угольник разрезали на треугольники вдоль не пересекающихся внутри него диагоналей. Найдите наибольшее число прямоугольных треугольников.
Задачу решили:
123
всего попыток:
164
Утроенная сумма двух положительных чисел не больше их произведения. Найдите наименьшее значение суммы этих чисел.
Задачу решили:
60
всего попыток:
82
Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|