img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 61
Задача опубликована: 10.09.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Луч света вышел из одного угла и, отразившись 6 раз от зеркальных сторон, попал в другой угол.

ray.jpg

Определите расстояние, которое он прошел. (Ответ введите округлив с точностью до двух знаков после десятичной запятой.)

Задачу решили: 15
всего попыток: 28
Задача опубликована: 14.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.

Задачу решили: 25
всего попыток: 64
Задача опубликована: 03.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.

Задачу решили: 36
всего попыток: 80
Задача опубликована: 23.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: anrzej

Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).

Задачу решили: 27
всего попыток: 95
Задача опубликована: 24.05.19 08:00
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

40 пиратов и капитан делят клад в 100 золотых монет. Пираты хотят получить вместе 80 монет, а капитан хочет получить все. Он предлагает игру. Капитан делит все монеты на 2 кучки, потом на 3 и так далее, пока все кучки не станут равными одной монете. Всего 99 ходов. Если на каком-либо ходе пираты найдут 40 кучек, сумма монет в которых равна 80, то они получают эти деньги. На каком минимальном ходу пираты обязательно получат деньги, как бы ни делил их капитан?

Задачу решили: 15
всего попыток: 58
Задача опубликована: 09.09.19 08:00
Прислал: TALMON img
Источник: Вписанные звёзды Н.Авилова (Задача 1878)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке.

Вписанные звезды

Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100?

Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.

Задачу решили: 41
всего попыток: 43
Задача опубликована: 30.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.

Задачу решили: 15
всего попыток: 16
Задача опубликована: 01.11.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).

Задачу решили: 32
всего попыток: 34
Задача опубликована: 18.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.

Задачу решили: 25
всего попыток: 49
Задача опубликована: 04.03.20 08:00
Прислал: DOMASH img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

2 квадрата и окружность

Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.