img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 85
Задача опубликована: 27.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Рассмотрим все функция f такие, что
f(x+2)+f(x)+f(x-2)=f(x+1)+f(x-1).

Найти наименьшее положительное число, являющееся периодом для всех f,

Задачу решили: 46
всего попыток: 66
Задача опубликована: 15.06.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|. 

Задачу решили: 58
всего попыток: 127
Задача опубликована: 06.07.15 08:00
Прислал: putout img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок).

Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].

Задачу решили: 35
всего попыток: 73
Задача опубликована: 27.07.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Три вершины треугольника с длинами сторон  a,b,c имеют целочисленные координаты и лежат на окружности радиуса R=20.  Найдите минимальное возможное значение произведения a•b•c.

Задачу решили: 40
всего попыток: 42
Задача опубликована: 18.09.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В треугольнике ABC |AB|=|AC|, точки D и E выбраны на сторонах AB и AC соответственно так, что |AD|=|DB|, |AE|=|EC|. Точка F расположена на прямой DE так, что треугольники ABC и BFA конгруэнтны. Найдите (|AB|/|BC|)2.

Задачу решили: 35
всего попыток: 64
Задача опубликована: 12.10.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Длины сторон треугольника ABC равны:

|AB| = 43

|AC| = 45

|BC| = 4

Точка O - центр окружности описанной около треугоьника ABC.

Точка Q - центр окружности описанной около треугоьника, вершины которого - середины сторон треугольника ABC.

D и E - точки на прямой BC.

Отрезки OD и QE перпендикулярны прямой BC.

Найдите длину отрезка DE.

Задачу решили: 37
всего попыток: 71
Задача опубликована: 21.10.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB  соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.

Задачу решили: 43
всего попыток: 47
Задача опубликована: 11.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно. При этом |AK| = |BK|, а |KM| = 5, найдите |AN|

+ 4
  
Задачу решили: 42
всего попыток: 54
Задача опубликована: 25.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 03.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.