Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
80
Найти максимум m=xy2z2/(x5+y5+z5) для всех положительных чисел x, y, z. В ответе введите значение (5m)5.
Задачу решили:
53
всего попыток:
65
Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.
Задачу решили:
64
всего попыток:
120
Пусть p(n) является произведением всех делителей для целого положительного n (включая 1 и n). Будем число n называть "особым", если p(n)=n2. Найдите сумму первых пяти особых чисел.
Задачу решили:
55
всего попыток:
99
Рассмотрим возрастающую последовательность целых положительных чисел, квадрат которых заканчивается на 889. Найти 889-е такое число.
Задачу решили:
49
всего попыток:
99
Найти сумму всех возможных значений k таких, что 2k+3m+1=6n, все k, m и n - целые.
Задачу решили:
35
всего попыток:
54
Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.
Задачу решили:
52
всего попыток:
127
Пусть множество S такое, что: 1) 2 принадлежит S 2) если n принадлежит S, то и n+5 принадлежит S 3) если n принадлежит S, то и 3n принадлежит S. Найдите максимальное n из S меньшее 2009.
Задачу решили:
41
всего попыток:
63
Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.
Задачу решили:
48
всего попыток:
69
Чтобы стать настоящим нагонским рыбаком, каждый кандидат должен: - поймать одну рыбу в первый день; - поймать 4 рыбы и 5 крабов во второй день; - поймать 25 рыб и 20 крабов в третий день; - поймать 90 рыб и 99 крабов в четвертый день; - поймать 329 рыб и 400 крабов в пятый день; ... и так далее в соответствии с таинственным нагонским законом. В итоге за первые 11 дней кандидат должен поймать общее количество морской живности, которое выражается формулой: a*3b+1 (a и b - целые числа; a≠3n для всех натуральных n). Найдите a+b.
Задачу решили:
40
всего попыток:
54
Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x): P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,... Найти сумму всех действительных решений уравнения P2014(x)=x.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|