Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
55
В круг вписан треугольник с длинами сторон 3, 4 и 5. Найдите площадь голубой части.
Задачу решили:
65
всего попыток:
93
Найти площадь трапеции.
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
48
всего попыток:
65
На рисунке A, B, C И D - конциклические точки. SAPD=27, SCPDQ=37, SBPC=12. Найдите SAPB.
Задачу решили:
42
всего попыток:
51
Стороны треугольника a, b, c являются целыми взаимно простыми числами и составляют арифметическую прогрессию. Самый большой угол треугольника в два раза больше самого меньшего. Найти периметр треугольника.
Задачу решили:
55
всего попыток:
61
Три окружности единичного радиуса расположены как показано на рисунке (центры на одной прямой, соседние окружности касаются). Из точки O проведена касательная к окружности с центром в точке F. Найдите длину отрезка AB.
Задачу решили:
52
всего попыток:
72
От центра окружности на расстоянии 5 проведена хорда. В оба получившихся сегмента вписаны квадраты, так что у обоих одна сторона лежит на хорде, а еще две точки на окружности. Найти разность длины сторон большего и меньшего квадрата.
Задачу решили:
57
всего попыток:
77
В квадрат со стороной 2 вписан прямоугольник так, что три его угла лежат на сторонах квадрата, при этом один угол находится в точке N, являющейся серединой стороны квадрата. Одна сторона прямоугольника лежит на линии, соединяющей N и вершину квадрата A. Найдите площадь прямоугольника.
Задачу решили:
55
всего попыток:
62
Лист бумаги размера 16×24 согнут так, что один угол находится в центре. Найти расстояние a.
Задачу решили:
45
всего попыток:
52
Равносторонний треугольник поделен прямой линией на 2 части с одинаковыми периметрами. Найдите максимум отношений площадей полученных фигур.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|