img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 5
  
Задачу решили: 32
всего попыток: 42
Задача опубликована: 16.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания? (Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

Задачу решили: 56
всего попыток: 171
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два муравья проползли каждый по своему замкнутому маршруту на доске 9 × 9. Каждый полз только по сторонам клеток доски и побывал в каждой из 100 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?

+ 7
  
Задачу решили: 67
всего попыток: 123
Задача опубликована: 20.02.12 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в черный цвет. При каком максимальном k можно за несколько таких ходов покрасить все 100 камней в черный цвет?

Задачу решили: 41
всего попыток: 250
Задача опубликована: 09.07.12 15:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.

Задачу решили: 60
всего попыток: 134
Задача опубликована: 30.08.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Стоимость билета в кино составляет 50 рублей. В очереди в кассу стоит 2012 зрителей. 1006 из них имеет только купюры по 50 рублей,
остальные — только по 100 рублей. У кассира  перед началом продаж нет денег. Определите вероятность того, что все зрители посмотрят фильм.

Задачу решили: 45
всего попыток: 153
Задача опубликована: 09.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?

Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 57
всего попыток: 64
Задача опубликована: 02.03.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: petrakomplekt (Жирайр Казарян)

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?

Задачу решили: 38
всего попыток: 42
Задача опубликована: 30.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг.

В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.