img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2197
всего попыток: 4658
Задача опубликована: 04.03.09 15:35
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: no_sense (Sense No)

– Привет!

– Привет!

– Как дела?

– Хорошо. Растут два сына.

– А сколько им лет?

– Сумма их возрастов равна квадрату количества голубей возле этой скамейки.

– Этой информации мне недостаточно...

– Старший похож на мать.

– Вот теперь я знаю ответ на свой вопрос.

Сколько лет сыновьям? (В ответе указать произведение их возрастов.)

Задачу решили: 77
всего попыток: 152
Задача опубликована: 04.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Найдите сколько наборов натуральных чисел a1, a2, ..., a9 обладает следующиеми свойствами:
1 ≤ a1 ≤ a2 ≤ ... ≤ a9 ≤ 9 
a5 = 5
a9 - a1 ≤ 7.

Задачу решили: 78
всего попыток: 98
Задача опубликована: 07.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Zoxan

Имеется три последовательных чётных числа. У первого из них нашли наибольший чётный собственный делитель, у второго — наибольший нечётный собственный делитель, у третьего — опять наибольший собственный чётный делитель. Известно, что сумма трёх полученных делителей быть равна 2013. Чему равно первое число последовательности ? (Делитель натурального числа называется собственным, если он отличен от 1 и этого числа)

Задачу решили: 119
всего попыток: 126
Задача опубликована: 11.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В параллелограмме ABCD со стороной AB = 1 точка M — середина стороны BC, а угол AMD составляет 90 градусов. Найдите сторону BC.

Задачу решили: 77
всего попыток: 117
Задача опубликована: 16.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Два лыжника ходят на лыжах по кольцевой трассе, половина которой представляет с собой подъем в гору, а половина — спуск с горы. На подъёме их скорости одинаковы и вчетверо меньше их скоростей на спуске. Минимальное отставание второго лыжника от первого равно 4 км, а максимальное — 13 км. Найдите длину трассы.

Задачу решили: 126
всего попыток: 189
Задача опубликована: 23.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?

Задачу решили: 93
всего попыток: 144
Задача опубликована: 01.02.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: putout (Дмитрий Лебедев)

В стране лжецов и рыцарей (рыцари всегда говорят правду, лжецы всегда лгут) десяти людям выдали различные числа от 1 до 10. Потом каждого спросили: «Делится ли ваше число на 2?». Утвердительный ответ дали 3 человека. На вопрос «Делится ли ваше число на 4?» утвердительный ответ дали 6 человек. На вопрос «Делится ли ваше число на 5?» утвердительно ответили 2 человека. Найти произведение чисел, которое получили лжецы.

Задачу решили: 67
всего попыток: 122
Задача опубликована: 20.05.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

За один ход с числом делается такая операция: если число не делится на 3, то вычитаем 1, а если делится, то делим на 3. Сколько существует таких чисел, из которых ровно за 13 ходов получается единица?

Задачу решили: 92
всего попыток: 109
Задача опубликована: 12.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Найдите коэффициент при x у многочлена
(x−a)(x−b)(x−c). . .(x−z).

Задачу решили: 71
всего попыток: 115
Задача опубликована: 19.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: perfect_result... (Александр Опарин)

Найти максимальное значенияе n < 2013 при котором все коэффициенты в разложении бинома Ньютона (a + b)n нечетны?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.