img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 2
+ЗАДАЧА 1377. Коммерческий турнир (Р. Женодаров, А. Храбров)
  
Задачу решили: 42
всего попыток: 50
Задача опубликована: 15.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Oleg2013

В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее числом игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью — одно, за поражение — ноль?

Задачу решили: 23
всего попыток: 28
Задача опубликована: 24.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Какое минимальное количество клеток можно закрасить черным в белом квадрате 300x300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?

Задачу решили: 14
всего попыток: 29
Задача опубликована: 27.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?

Задачу решили: 38
всего попыток: 123
Задача опубликована: 29.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Angelina

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

Задачу решили: 83
всего попыток: 84
Задача опубликована: 01.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Задачу решили: 33
всего попыток: 77
Задача опубликована: 11.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Вовочка задумал одно из чисел: 1, 2 или 3. На все вопросы он отвечает только: "да", "нет" или "не знаю". Попробуйте задать ему один вопрос, чтобы узнать задуманное число?

+ 1
+ЗАДАЧА 1391. Гонки (М. Мурашкин)
  
Задачу решили: 33
всего попыток: 56
Задача опубликована: 18.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Задачу решили: 42
всего попыток: 54
Задача опубликована: 22.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Random (Руслан Головин)

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на любой горизонтали, вертикали и диагонали находилось четное число фишек?

Задачу решили: 33
всего попыток: 80
Задача опубликована: 05.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?

Задачу решили: 30
всего попыток: 45
Задача опубликована: 15.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В правильном десятиугольнике ABCDEFGHIJ со стороной 1 проведена прямая Q1Q2, так что в треугольнике Q1AQ2: |Q1A|+|AQ2|=1. Найдите сумму всех углов в градусах, под которыми виден отрезок Q1Q2 из всех вершин за исключением вершины A.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.