Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
56
всего попыток:
61
В трапеции АВСD c основаниями АВ и CD проведены 2 отрезка EF и GH,где точки E-центр АВ, F-центр ВС, G-центр CD, H-центр АD. Найти площадь шестиугольника AEFCGH, если площадь трапеции равна 1.
Задачу решили:
60
всего попыток:
68
В параллелограмме АВСD с единичной площадью взята некоторая точка О. Площадь треугольника АОВ равна 1/7. Найти площадь треугольника СОD.
Задачу решили:
20
всего попыток:
140
Концы часовой, минутной и секундной стрелок одинаковой длины временами оказываются в вершинах прямоугольного треугольника и часы дают сигнал. Какое наименьшее количество сигналов можно услышать в течение одного часа (час начинается с 0 минут и 0 секунд).
Задачу решили:
67
всего попыток:
72
В треугольнике АВС с углом С 45 градусов расположена точка О так, что угол АОВ прямой, ОВ=ОС. Найти угол ОАВ в градусах.
Задачу решили:
61
всего попыток:
85
На продолжении диагонали АС квадрата АВСD отмечена точка Е, отстоящая от вершины В на расстоянии, равном диагонали. Найти угол ЕВС в градусах.
Задачу решили:
41
всего попыток:
44
На отрезке AB длиной 10см. отмечена точка С так, что АС:СВ=5:12. По одну сторону отрезка АВ построены два квадрата АСDE и CBFG. Прямая, содержащая отрезок AD,пересекает FG в точке H. Прямые, содержащие отрезки AG и BH,пересекаются в точке K. Найти BK.
Задачу решили:
36
всего попыток:
68
Внутри угла в 60 градусов расположена точка. Расстояния от этой точки до сторон (лучей) и вершины угла равны различным целочисленным значениям. Найти наименьшее значение суммы этих расстояний.
Задачу решили:
35
всего попыток:
62
Вася всеми способами разделив прямоугольник на 3 равновеликих прямоугольника, получил различные значения сумм периметров при каждом способе, общая сумма всех которых составила 690. Найти периметр исходного прямоугольника.
Задачу решили:
39
всего попыток:
60
На сторонах AB и BC квадрата ABCD даны, соответственно, две точки E и F так, что углы AED и FED равны, |AE|=5, |FC|=2. Найти |EF|.
Задачу решили:
32
всего попыток:
46
Отношение двух медиан к сторонам треугольника, к которым они проведены, равны 3/2 и 3/4. Найти отношение третьей медианы к соответсвующей стороне треугольника. В ответе указать квадрат этого значения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|