img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 386
всего попыток: 1340
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 231
всего попыток: 718
Задача опубликована: 06.05.09 15:33
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

На какое минимальное число тетраэдров можно разрезать куб? (Тетраэдр — это треугольная пирамида.)

Задачу решили: 107
всего попыток: 499
Задача опубликована: 08.05.09 23:16
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 195
всего попыток: 940
Задача опубликована: 13.05.09 09:32
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: casper

В шляпе лежат 5 карточек: у одной обе стороны красные, у другой обе стороны чёрные, а у каждой из трёх остальных одна сторона красная, а другая чёрная. Все стороны всех карточек можно отличить друг от друга только по цвету. Закрываем глаза, наудачу вытаскиваем одну карточку и кладём её на стол. Открываем глаза и видим, что её верхняя сторона — красная. Сколько процентов составляет вероятность, что её нижняя сторона  — тоже красная?

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 239
всего попыток: 492
Задача опубликована: 30.05.09 23:13
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Гусеница сидит в углу закрытой коробки 27×41×51 см. В самом дальнем от неё углу коробки есть маленькое отверстие, через которое она хочет выбраться на свободу. Какое наименьшее число сантиметров ей придётся для этого преодолеть?

Задачу решили: 273
всего попыток: 477
Задача опубликована: 20.05.09 22:17
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: God_Gefest (Илья Закирзянов)

Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)

Задачу решили: 132
всего попыток: 1048
Задача опубликована: 22.05.09 17:53
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?

Задачу решили: 136
всего попыток: 384
Задача опубликована: 25.05.09 22:46
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: NNN

Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.