Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
30
В треугольнике АВС медиана AM разделена на три равных отрезка вписанной окружностью. Найти периметр треугольника, если |АВ|=5.
Задачу решили:
23
всего попыток:
30
В прямоугольнике ABCD провели два отрезка СК (точка К на стороне АВ, |АК|:|КВ|=1:1) и ВМ (точка М на стороне AD, |AM|:|MD|=2:1). Точка F - точка пересечения этих двух отрезков. Найти отношение площади треугольника KBF к площади четырехугольника MFCD.
Задачу решили:
22
всего попыток:
35
Две окружности с радиусами R1, R2 расположены так, что длина отрезка между центрами равна R1+R2+d (d-расстояние между окружностями). Найти наименьшее целочисленное значение длины отрезка внутренней касательной, если известно, что d, R1, R2 - последовательные натуральные числа.
Задачу решили:
17
всего попыток:
23
В трапеции с целочисленными основаниями проведены три параллельных целочисленных отрезка: 1) через точку пересечения диагоналей. 2) средняя линия трапеции. 3) отрезок деления данной трапеции на две равновеликие трапеции. Найти наименьшую сумму длин всех пяти отрезков, включая основания данной трапеции.
Задачу решили:
21
всего попыток:
23
В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.
Задачу решили:
22
всего попыток:
32
Вписанная в трапецию окружность разделила среднюю линию на три отрезка 3, 24, 8. Найти длину большого основания.
Задачу решили:
22
всего попыток:
24
Точка вне квадрата находится на расстояниях от концов одной из диагоналей в отношении между собой 1:4. Угол между отрезками этих расстояний прямой. Найти отношение расстояний от этой точки до концов другой диагонали (меньшего к большему).
Задачу решили:
19
всего попыток:
25
Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.
Задачу решили:
22
всего попыток:
37
a/b + b/c + c/a=3,
Задачу решили:
22
всего попыток:
24
Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|