img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow добавил комментарий к задаче "Четыре коня" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 66
Задача опубликована: 15.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На шахматной доске стоят 4 коня на разных клетках одного цвета. За один ход все кони одновременно перемещаются на другую клетку, при этом на одной клетке могут находиться несколько коней. Необходимо собрать всех коней на одной клетке за минимальное число ходов. Какое наибольшее число ходов придется сделать при наихудшем изначальным расположении коней?

Задачу решили: 12
всего попыток: 33
Задача опубликована: 22.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.

Применяя теорему Пифагора, видим, что высота треугольника
h = √(172 - 82) = 15, что на единицу меньше основания.
Для b = 272 и L = 305 мы имеем h = 273, что на единицу больше основания, и это второй по величине равнобедренный треугольник со свойством h = b ± 1.

Найдите сумму периметров десяти наименьших равнобедренных треугольников, для которых h = b ± 1 и b, L натуральные числа.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 29.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Пусть (a, b, c) - тройка сторон прямоугольного треугольника и c гипотенуза. Причем a, b и с - натуральные. Возможно сложить четыре таких треугольника вместе, чтобы составить квадрат с квадратным отверстием.

Например, 4 треугольника со сторонами (3, 4, 5) могут быть сложены вместе чтобы составить квадрат 5 на 5 с отверстием 1 на 1 посредине. При этом квадрат 5 на 5 можно замостить 25 квадратами 1 на 1 (такими как отверстие).

А для треугольника (5, 12, 13) отверстие будет 7 на 7, но квадратами 7 на 7 невозможно покрыть квадрат 13 на 13.

Какова сумма периметров прямоугольных треугольников (a, b, c), таких что a < b, длины сторон взаимнопросты (НОД(a, b, c) = 1) и для которых можно квадрат со стороной c покрыть квадратами равными образующемуся отверстию, среди прямоугольных треугольников с периметрами меньшими 100000000?

Задачу решили: 6
всего попыток: 14
Задача опубликована: 05.04.10 08:00
Прислал: admin img
Источник: Международная олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:

1 2 3 4
8 7 6 5

 Разрешены такие преобразования:

  1. перестановка верхнего и нижнего рядов
  2. циклический сдвиг вправо на один квадрат (при этом левый нижний квадрат перемещается вверх и становится левым верхним)
  3. поворот по часовой стрелке четырех средних квадратов.

Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований.

За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.

Задачу решили: 6
всего попыток: 25
Задача опубликована: 12.04.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 3 img
баллы: 300

Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 03.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В лазерной физике используют системы зеркал, которые действуют как линии задержки для проходящего лазерного луча. Луч входит в систему, многократно отражается от зеркал и, в конце концов, выходит обратно.

Мы рассмотрим такую линию задержки, имеющую форму эллипса с уравнением 4x2 + y2= 100.

В верхней части эллипса сделано отверстие −0.01 ≤ x ≤ +0.01 для входа и выхода луча.

В нашей задаче луч направляется из точки с координатами (0,0;10,1) внутрь эллипса, где испытывает первое отражение в точке (1,4;-9,6),

Луч отражается по обычному закону "угол падения равен углу отражения". Иначе говоря, падающий и отраженный луч образуют с нормалью в точке падения равные углы.

На рисунке слева красной линией показана траектория луча к первым двум точкам отражения. Синим обозначена касательная к эллипсу в первой точке отражения. Наклон касательной в точке эллипса с координатами (x,y) можно найти по формуле: m = −4x/y. Нормаль перпендикулярна касательной в точке падения.

На анимированной картинке справа показаны первые 10 отражений луча.

Какой длины путь проделает луч внутри эллиптической системы задержки? Результат округлите до целого.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 10.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке.

Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313.

Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи.

А сколько обратимых чисел не превышает 1021?

Задачу решили: 8
всего попыток: 14
Задача опубликована: 24.05.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?

Задачу решили: 5
всего попыток: 7
Задача опубликована: 24.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена решетка размером 3x2, состоящая из вертикальных, горизонтальных и наклонных отрезков. Для данной решетка существует 37 прямоугольников, вершины которых лежат на узлах решетки.

Есть пять решеток меньшего размера: 1x1, 2x1, 3x1, 1x2 и 2x2 (каждое из измерений этих решеток не превосходит соответствующего измерения нашей решетки 3x2). Подсчитаем, сколько прямоугольников можно разместить на узлах этих решеток:

1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18

Сложив все эти числа, получим, что 1+4+8+4+18+37=72 различных прямоугольников можно разместить на узлах решеток 3x2 и меньших.

Сколько различных прямоугольников можно разместить на узлах решеток 300x200 и меньших?

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.