Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
86
всего попыток:
248
Составьте из цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 все возможные различные числа, начиная с 0, при этом в каждом числе одна цифра должна использоваться не более одного раза, при этом записи вида 012 и 12 означают одно и тоже число. Выпишите полученные числа в порядке возрастания. Какое число окажется на миллионном месте?
Задачу решили:
78
всего попыток:
170
Избыточное число - это такое число, сумма делителей которого (отличных от самого числа), больше этого числа. Известно, что все числа выше 28123 могут быть представлены в виде суммы двух различных избыточных чисел. Найти сумму всех четных положительных чисел, которые не могут быть представлены в виде суммы двух избыточных чисел.
Задачу решили:
108
всего попыток:
228
Расположите натуральные числа по спирали следующим способом: Просуммируйте числа расположенные на каждой из двух диагоналей и найдите произведение этих чисел.
Задачу решили:
108
всего попыток:
288
Пусть a и b натуральные числа и 2 < a < 200, 1 < b < 100. Сколько различных чисел может быть получено по формуле ab?
Задачу решили:
87
всего попыток:
141
В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей. Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей.
Задачу решили:
133
всего попыток:
261
Удивительно, но имеется всего 3 числа, которые могут быть представлены в виде 4-х степеней составляющих их цифр (1=14 - не считается): 1634 = 14 + 64 + 34 + 44 Найдите все числа, которые могут быть представлены в виде суммы 5-х степеней составляющих их цифр. Чему равно произведение всех этих чисел?
Задачу решили:
465
всего попыток:
1287
Каким числом будет 1-й понедельник 1 000 000 года нашей эры? Следует учитывать, что год високосный, если он кратен 4 и при этом не кратен 100, либо кратен 400, например, 2012 и 2400 - високосные года, а 2100 - невисокосный.
Задачу решили:
96
всего попыток:
171
Пусть A*B=C и при этом для десятичной записи всех трех чисел A, B и C используются ровно 9 различных цифр от 1 до 9 (каждая цифра используется только 1 раз, например, 39*186=7254). Найти сумму всех различных чисел C, которые удовлетворяют описанному выше требованию.
Задачу решили:
104
всего попыток:
162
Дробь 49/98 удивительна тем, что "сократив" одинаковую цифру 9 в числителе и знаменателе получаем 4/8, которая равна исходной дроби, то есть 49/98=4/8. Дроби вида 30/50 также обладают подобным свойством, но они тривиальные. Рассмотрим все нетривиальные положительные дроби, обладающие описанным свойством, в которых числитель меньше знаменателя (то есть дробь меньше единицы) и оба двузначные. Чему равна сумма знаменателей этих дробей?
Задачу решили:
135
всего попыток:
205
Рассмотрим все числа, которые равны сумме факториалов цифр, входящих в их десятичную запись (например, 145=1!+4!+5!). Чему равно произведение всех чисел, которые обладают описанным свойством?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|