Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
211
всего попыток:
630
Из 220 спичек сложили квадрат 10×10, состоящий из 100 маленьких квадратиков 1×1. Фигуру из четырёх спичек, сходящихся в одной точке, будем называть крестиком. Какое наименьшее число спичек нужно убрать, чтобы не осталось ни одного крестика?
Задачу решили:
171
всего попыток:
572
На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?
Задачу решили:
140
всего попыток:
412
Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
1307
всего попыток:
1483
Найдите сумму x+y+z, где x,y,z — какие-нибудь положительные целые числа, удовлетворяющие уравнению: 28x+30y+31z=365.
Задачу решили:
198
всего попыток:
375
Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?
Задачу решили:
129
всего попыток:
1028
В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов? (В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)
Задачу решили:
177
всего попыток:
627
Есть картонный невыпуклый стоугольник. Если разрезать его один раз по прямой линии, то он распадётся на несколько новых многоугольников. Какое максимальное число треугольников может среди них получиться?
(Предлагалась на "Первом математическом")
Задачу решили:
226
всего попыток:
551
Каждое из 2009 чисел равно 1, 0 или -1. Какое наименьшее значение может принимать сумма произведений всех пар, составленных из этих чисел?
(Предлагалась на "Первом математическом")
Задачу решили:
270
всего попыток:
432
С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?
(Предлагалась на "Первом математическом")
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|