img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 27
всего попыток: 53
Задача опубликована: 03.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a. 

Задачу решили: 25
всего попыток: 35
Задача опубликована: 29.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Имеются две модели октаэдров: каркасная и бумажная.

2 октаэдра

Число k – это отношение длины ребра каркасного октаэдра к длине ребра бумажного октаэдра. Ребра каркасного октаэдра считать бесконечно тонкими. При каком наименьшем значении k бумажный октаэдр можно вставить внутрь каркасного октаэдра? В ответе укажите квадрат этого отношения.

Задачу решили: 30
всего попыток: 84
Задача опубликована: 27.05.20 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2012" (Легион)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Одна из вершин куба симметрично отражена относительно центра каждой его грани. Полученные таким образом шесть точек являются вершинами выпуклого многогранника. Найдите его объём, если объём куба равен 36.

Задачу решили: 31
всего попыток: 51
Задача опубликована: 28.09.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Расмотрим такую последовательность:
F0 = 0,
F1 = 1,
F2 = 3,
F3 = 10,
...
Fn+2 = 3Fn+1 + Fn

Сколько цифр в F1000000 ?

Задачу решили: 17
всего попыток: 24
Задача опубликована: 02.10.20 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mikev

Даны три точки: A = (-20, 0, 0), B = (20, 0, 0), C(0, 20√3, 0). Назовем точку D(x, y, z) подходящей, если расстояние от неё до какой-нибудь из этих трёх точек равно сумме расстояний от D до двух других. Чему равен объём наименьшего шара, содержащего все подходящие точки? В качестве ответа введите целую часть значения объёма.

Задачу решили: 35
всего попыток: 40
Задача опубликована: 12.10.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Рассматривается последовательность действительных чисел {an}, n =0, 1, 2. … При  n>0  члены последовательности удовлетворяют уравнению:
2an+1 – 3an + an –1 = 0,
а0 = 2 и lim an = 6  при  n→∞.

Найдите величину  a5 (то есть член последовательности с индексом 5).

Задачу решили: 20
всего попыток: 27
Задача опубликована: 09.11.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В тетраэдре ABCD: |AB|=a, |CD|=b, расстояние между прямыми AB и CD равно d, величина угла между этими прямыми равна a. Тетраэдр разделен на две части плоскостью P, параллельной противвоположным ребрам AB и CD. Вычислите отношение объёмов обеих частей (меньшего к большему), если известно, что отношение расстояния от AB до P к расстоянию от CD до P равно 3.

Задачу решили: 18
всего попыток: 32
Задача опубликована: 11.12.20 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В кубе ABCDA1B1C1D1 концы отрезка KF лежат на диагоналях AD1 и B1C и он параллелен плоскости основания ABCD. Точка М – точка пересечения отрезка KF с диагональной плоскостью A1BCD1. Геометрическое множество точек М образует линию, которая делит прямоугольник A1BCD1 на две части. Найдите отношение площади меньшей части к площади большей.

Задачу решили: 29
всего попыток: 40
Задача опубликована: 06.01.21 08:00
Прислал: fortpost img
Источник: «Математическое просвещение»
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
В ответе введите сумму различных значений x.

Задачу решили: 29
всего попыток: 82
Задача опубликована: 13.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.