img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 49
всего попыток: 99
Задача опубликована: 30.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех возможных значений k таких, что

2k+3m+1=6n, все k, m и n - целые.

Задачу решили: 52
всего попыток: 127
Задача опубликована: 15.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kvanted

Пусть множество S такое, что:

1) 2 принадлежит S

2) если n принадлежит S, то и n+5 принадлежит S

3) если n принадлежит S, то и 3n принадлежит S.

Найдите максимальное n из S меньшее 2009.

Задачу решили: 53
всего попыток: 58
Задача опубликована: 15.12.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вася, начиная с 1000-го года, начал извлекать кубические корни числовых значений годов и обнаружил год, кубический корень которого имеет первые 10 различных цифр. Какой был этот год, если известно,что Вася именно в том году занимался этой арифметикой. 

+ 5
  
Задачу решили: 44
всего попыток: 93
Задача опубликована: 05.06.19 08:00
Прислал: avilow img
Источник: Токарев С.И. Турнир городов 1995/96
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Вычеркните из произведения 1!·2!·3!·...·200! один из факториалов, то есть множитель вида k!, так, чтобы произведение оставшихся было квадратом целого числа. В ответе укажите наименьшее значение k.

Задачу решили: 24
всего попыток: 51
Задача опубликована: 18.06.21 08:00
Прислал: avilow img
Источник: Бразильский математический форум
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна?

Числовые ожерелья

Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком. 

Задачу решили: 34
всего попыток: 38
Задача опубликована: 26.10.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Число 169=132=122+52. Но интересно, что 1692 -  тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.

Задачу решили: 21
всего попыток: 28
Задача опубликована: 07.08.24 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Взаимно простые целые числа x, y и z удовлетворяют следующим условиям:

x2+y2+z2=2xy+2yz+2zx

0<z<y<x<12345

Найти наибольшее значение x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.