Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
61
всего попыток:
83
Два бизнесмена вложили деньги в общее дело вместе 17 млн. рублей. Через неделю один из них вложил еще дополнительно деньги. Сколько всего в итоге он вложил денег (в миллионах), если его новая доля в общей оказалась в 7 раз больше прежней, тогда как доля другого в 5 раз меньше прежней?
Задачу решили:
52
всего попыток:
55
Найти наименьшее решение уравнения:
Задачу решили:
49
всего попыток:
70
Если то чему равно .
Задачу решили:
66
всего попыток:
106
Гимнасты одного веса построили пирамиду, изображенную на рисунке. Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.
Задачу решили:
37
всего попыток:
40
Приведенные квадратные трехчлены, каждый из которых имеет два различных корня, f(x) и g(x) таковы, что f(2)=g(3), f(3)=g(2), f(a)=0, f(b)=0, g(c)=0, g(d)=0, a≠b, c≠d. Найти a+b+c+d.
Задачу решили:
41
всего попыток:
60
Пусть x, y, z не равные нулю целые числа. Найти количество решений уравнения x8+y4=z2.
Задачу решили:
47
всего попыток:
51
a/(b+c)+b/(a+c)+c/(a+b)=1. Найти a2/(b+c)+b2/(a+c)+c2/(a+b).
Задачу решили:
33
всего попыток:
52
На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.
Задачу решили:
51
всего попыток:
69
Натуральные числа m и n такие, что 2mn=(m+4)*(n+4) и m<n. Найдите сумму всех возможных m.
Задачу решили:
34
всего попыток:
36
Функция f определена на множестве целых чисел, принимает только целые числа и при этом f(2m)+2f(n)=f(f(m+n)) для всех целых m и n. Найдите максимальное возможное значение f(2019), если f(0)=2019.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|