Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
74
Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?
Задачу решили:
145
всего попыток:
199
Найдите максимально возможное целое значение отношения (x+y+z)2/(xyz), где x, y и z — положительные целые числа.
Задачу решили:
35
всего попыток:
46
Доказать, что степень двойки 2n при любом целом n>2 представляется в виде 2n=7x2+y2, где x и y — нечётные целые числа.
Задачу решили:
36
всего попыток:
61
Найдите действительные числа x, y и z, удовлетворяющие следующим уравнениям и неравенствам: x–2y–xy2=0, y–2z–yz2=0, z–2x–zx2=0, x>y>z. В ответе укажите значение x.
Задачу решили:
59
всего попыток:
357
Решите уравнение xy=yx в рациональных числах. В ответе укажите количество его различных решений, удовлетворяющих неравенствам: x>y, x>11/4.
Это открытая задача
(*?*)
Представим отрезок гармонического ряда
Задачу решили:
93
всего попыток:
217
Чему равна последняя цифра числа [1020000/(10100+3)], где [x] означает "целая часть числа x"?
Задачу решили:
49
всего попыток:
85
Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.
Задачу решили:
20
всего попыток:
132
Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.
Задачу решили:
36
всего попыток:
159
Натуральные числа a и b таковы, что число — целое и . Каков максимально возможный наибольший общий делитель чисел a и b?
(Задача отредактирована, как предложил Vkorsukov.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|