Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
46
Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом: 1. f(0,m)=1, если m=0 или m=1; 2. f(0,m)=0, если m≠0 и m≠1; 3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m; Найдите сумму
Задачу решили:
57
всего попыток:
92
Известно, что для трех различных натуральных чисел их сумма, а также суммы каждых двух являются квадратами целых чисел. Найдите минимальное произведение этих чисел.
Задачу решили:
74
всего попыток:
96
Найти максимальное значение параметра a, при котором верно неравенство: ax2-2x > 3a-1 для всех x <0.
Задачу решили:
77
всего попыток:
80
Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.
Задачу решили:
15
всего попыток:
181
Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.
Задачу решили:
28
всего попыток:
88
Числовая последовательность задаётся уравнениями | xn | = | xn–1 + 1|; x0=0. Найдите min | x1+x2+…+x2014|.
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Задачу решили:
44
всего попыток:
63
Рассмотрим все пары ненулевых целых чисел (a, b) таких, что уравнение (ax-b)2+(bx-a)2=x имеет хотя бы одно целое решение. Найдите сумму всех решений уравнения.
Задачу решили:
97
всего попыток:
109
Периметр одного треугольника равен 25, второго - 35, шестиугольной звезды - 50. Чему равен периметр зеленого шестиугольника?
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|