Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
194
всего попыток:
292
Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
212
всего попыток:
349
Летиция фон Дорн нанимает моряков на свой корабль. Жалованье офицера составляет 50 экю, боцмана — 25 экю, а матроса — 10 экю. Всего нанято 100 человек. Один офицер командует не более, чем 10 людьми. Сколько нанято офицеров, если всего потрачено 1500 экю?
Задачу решили:
192
всего попыток:
317
Машинист ночного экспресса рассказал: "Через полчаса после отправления у нас сломался цилиндр, и нам пришлось ехать со скоростью на 40% меньше прежней. В результате на следующую станцию мы прибыли на час позже, чем полагалось. А вот если бы поломка произошла на 50 км дальше, то мы опоздали бы только на 40 минут." Чему равно (в км) расстояние между станциями?
Задачу решили:
99
всего попыток:
325
Кузнечик сидит внутри закрытой коробки размером 20×20×20 см. Он может прыгать ровно на 30 см в любом направлении. За какое наименьшее число прыжков кузнечик сможет добраться из одного угла коробки до самого дальнего от него другого угла?
Задачу решили:
43
всего попыток:
55
Абажур лампы сконструирован, чтобы освещать октант (трёхгранный угол с прямыми плоскими углами). Лампа расположена в центре кубической комнаты. Можно ли её абажур повернуть так, чтобы она не освещала ни одной вершины комнаты?
Задачу решили:
90
всего попыток:
124
Все вершины выпуклого многогранника расположены в целочисленных точках. Ни внутри, ни на гранях, ни на рёбрах многогранника других целочисленных точек нет. Найти наибольшее число его вершин. (Целочисленная точка — это точка, все три координаты которой являются целыми числами.)
Задачу решили:
98
всего попыток:
201
Последовательность определяется условиями: x1=2009; x2=2010; xn+1=xn−1−1/xn при n>1. Найдите n, при котором xn=0.
Задачу решили:
181
всего попыток:
270
Перед Вами тортик в форме куба, который нужно разрезать на 27 одинаковых кубиков. Какое наименьшее число разрезов Вам понадобится сделать, если разрешается резать сразу несколько кусков, которые перед этим можно как угодно переложить и перевернуть? (Каждый разрез осуществляется вдоль одной плоскости.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|