Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
137
всего попыток:
147
Решите систему уравнений:
Задачу решили:
45
всего попыток:
111
Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).
Задачу решили:
66
всего попыток:
172
Дана последовательность натуральных чисел u0, u1,u2,... такая, что u0=1, un-1*un+1=kun, для любого n≥1. Найти сумму всех возможных значений параметра k, если известно, что u2012=2012.
Задачу решили:
66
всего попыток:
135
Решите систему уравнений: В ответе укажите максимальное значение 10(x+y), округленное до ближайшего целого.
Задачу решили:
71
всего попыток:
86
Даны два многочлена, которые удовлетворяют условиям: a5 + b5 +c5 + 5(a4(b + c) + b4(a + c) +c4(a + b)) = -1 a3(b2 + c2 ) + b3(a2 + c2) + c3(a2 + b2) + 2(a3bc + b3ac +c3ab ) + 3abc(ab + bc + ac) = 1/10 Чему равно a + b + c?
Задачу решили:
36
всего попыток:
142
Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.
Задачу решили:
31
всего попыток:
48
Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию ||an|-1|<1/2012 при n=1,...,2012. Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.
Задачу решили:
119
всего попыток:
136
Найдите максимально возможное целое значение отношения (x+y)^2/(xy), где x и y — положительные целые числа.
Задачу решили:
36
всего попыток:
156
На ипподроме происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые лошади могут придти к финишу одновременно (голова в голову)? (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).
Задачу решили:
52
всего попыток:
269
В куб с ребром 3 вписаны 2 шара: один диаметром 2, касается трех граней, нижней и двух боковых, другой стоит на первом и тоже касается трех граней - тех же боковых и верхней. Чему равен диаметр верхнего шара? Ответ ввести с точностью до 2 знаков после запятой.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|