img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 161
всего попыток: 191
Задача опубликована: 07.10.09 22:49
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)

Задачу решили: 134
всего попыток: 222
Задача опубликована: 17.10.09 23:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти наименьшее значение r, при котором справедливо утверждение: любая замкнутая плоская ломаная длины 60 лежит в круге радиуса r.

Задачу решили: 139
всего попыток: 164
Задача опубликована: 09.11.09 12:08
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.

Задачу решили: 85
всего попыток: 238
Задача опубликована: 21.11.09 15:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти такое наименьшее число n, что любой выпуклый 60-угольник является пересечением n треугольников.

Задачу решили: 107
всего попыток: 144
Задача опубликована: 03.12.09 13:24
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?

Задачу решили: 170
всего попыток: 208
Задача опубликована: 14.12.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?

Задачу решили: 91
всего попыток: 240
Задача опубликована: 22.12.09 22:46
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?

+ 26
  
Задачу решили: 49
всего попыток: 143
Задача опубликована: 16.01.10 15:52
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 51
всего попыток: 72
Задача опубликована: 31.01.10 23:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.