Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
50
Вовочка в кижном магазине покупал только книги, цены на которые заканчивается на 99 коп. В итоге он заплатил 69 руб. 79 коп. Сколько всего книг он купил?
Задачу решили:
54
всего попыток:
57
Пионер Вася каждый год создает число, с помощью которого легко определяет день недели конкретной даты текущего года. Допишите три цифры волшебного числа 033 614 ххх 035 для 2018 года. В ответ введите число, состоящее из трех пропущенных цифр.
Задачу решили:
32
всего попыток:
56
Среди 100 жителей осторова есть те, кто всегда говорят правду и те, кто всегда лгут. На вопрос гостя острова о том, сколько жителей осторова говорят правду, все жители дали ответы, при этом n-й по счету отвечающий утверждал, что на острове количество говорящих правду равно n2 по модулю 100. Сколько на острове лжецов?
Задачу решили:
46
всего попыток:
54
В целом числе последняя цифра 8, когда ее переставили в начало, то число стало в два раза больше. Найдите минимальное такое число.
Задачу решили:
78
всего попыток:
124
Часы показывают время в первой половине дня. Определите время.
Задачу решили:
37
всего попыток:
61
Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?
Задачу решили:
42
всего попыток:
53
Трехзначное число делится на 11 без остатка. При этом частное равно сумме квадратов цифр делимого. Найдите сумму всех таких трехзначных чисел.
Задачу решили:
41
всего попыток:
77
Найдите пропущенное число:
Задачу решили:
23
всего попыток:
40
Костя выписал в строчку без пробелов все натуральные числа от 1 до N, а потом вычеркнул из строчки N одинаковых цифр. При каком наименьшем N>1 это могло случиться?
Задачу решили:
30
всего попыток:
45
Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|