Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
62
всего попыток:
108
Для действительных чисел x, y выполнено условие |x + y + 1| + |x + 1| + |y + 3| = 3. Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2. Найдите M + 2m.
Задачу решили:
54
всего попыток:
74
Известно, что действительные числа a и b удовлетворяют уравнению
Задачу решили:
55
всего попыток:
69
Найдите f(2012) если f: NxN такая, что f(m–n+f(n)) = f(m)+f(n) при всех m, n из N.
Задачу решили:
28
всего попыток:
94
Найдите максимальное количество плоскостей, каждая из которых равноудалена от некоторых четырёх точек из заданных 2014-ти точек пространства, расположенных в общем положении.
Задачу решили:
57
всего попыток:
139
Действительные числа a, b, c удовлетворяют условию ab + bc + ac = 7(a + b + c) - 30. Найдите минимум выражения a2 + b2 + c2.
Задачу решили:
62
всего попыток:
69
Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).
Задачу решили:
40
всего попыток:
93
Положительные действительные числа a и b удовлетворяют условию
Задачу решили:
39
всего попыток:
60
Для положительных действительных чисел a и b выполняется условие
Задачу решили:
38
всего попыток:
81
Известно, что для положительных действительных чисел a, b и c, верно: a2 + b2 + c2 = 5(ab+bc+ca)/2. Найдите минимум выражения (a+b+c)/(abc)1/3. Ответ укажите с точностью до 3-х знаков после запятой.
Задачу решили:
33
всего попыток:
99
Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами: (i) Касательная в точке P проходит через начало координат. Для точки P(a,b) обозначим за M и m максимум и минимум выражения Найдите 36M + 27m2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|