img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 406
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

Задачу решили: 23
всего попыток: 252
Задача опубликована: 09.11.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.

Задачу решили: 65
всего попыток: 77
Задача опубликована: 19.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках  X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.

Задачу решили: 64
всего попыток: 66
Задача опубликована: 26.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD  в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u. 

Задачу решили: 38
всего попыток: 187
Задача опубликована: 10.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

22551.jpg

Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a,  |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.

Задачу решили: 33
всего попыток: 148
Задача опубликована: 04.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

1123.jpg

Рассмотрим полуокружность с центром в точке O и радиусом |AO|=|OB|=17. Внутри отрезка OB произвольным образом выбираем точку C при этом |AO|<|AC|<|AB|. С центром в точке C и радиусом |CB|=|CD| построим еще одну полуокружность. Через точку D проведем прямую, перпендикулярную прямой AB и пересекающуюся с большой полуокружностью в точке D'. В фигурный сектор DD'B вписана окружность с центром в точке I и касающаяся прямой DD' и обеих полуокружностей в точках H, G и F соответственно. (см. рис.)

Проведем прямую через точки С и I, которая пересекается с прямой DD' в точке E. Найдите все возможные случаи, когда длина отрезка |CE| - целое число. В ответ введите сумму найденных вариантов.

Задачу решили: 119
всего попыток: 126
Задача опубликована: 11.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В параллелограмме ABCD со стороной AB = 1 точка M — середина стороны BC, а угол AMD составляет 90 градусов. Найдите сторону BC.

Задачу решили: 126
всего попыток: 189
Задача опубликована: 23.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?

Задачу решили: 66
всего попыток: 95
Задача опубликована: 30.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Freeplay (Арсений Кузнецов)

112.jpg

На окружности с центром в т.O выбраны точки A и B так, что угол AOB=90°. На бОльшей дуге AB произвольным образом выбрана точка С (будем считать, что B и С лежат по одну сторону от прямой AO) через которую проведена касательная к нашей окружности. Из точек A и B проведены перпендикуляры к  этой касательной, пересекающие ее в точках D и E соответственно. Причем оказалось, что |AD|=686, а |BE|=252. Найдите радиус окружности |AO|.

Задачу решили: 71
всего попыток: 199
Задача опубликована: 06.02.13 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Какова вероятность того, что два случайных натуральных числа  являются взаимно простыми, т.е. их наибольший общий делитель равен 1. (Ответ представить в виде округленного до целого значения числа процентов).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.