Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
110
всего попыток:
151
Решите уравнение в натуральных числах: x!+y!+z!=u!. В ответе укажите сумму всех возможных вариантов x+y+z+u.
Задачу решили:
65
всего попыток:
121
Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство: Чему равно K+G для n = 100.
Задачу решили:
89
всего попыток:
185
У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа. Сосед сообщает ему, что из предыдущего опыта известно, что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище?
Задачу решили:
94
всего попыток:
109
f(x)=4x/(4x+2) S=f(0)+f(1/n)+f(2/n)+…+f((n-1)/n)+f(1)=? (n-нечетное) Чему равно S при n=2011?
Задачу решили:
51
всего попыток:
141
Найдите максимальное целочисленное значение длины диагонали многогранника, если сумма длин его рёбер равна 2012.
Задачу решили:
21
всего попыток:
129
A - основание 4-угольной пирамиды. B, C, D, E - её боковые грани. B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A: α - угол между гранью B и основанием A. β - угол между гранью D и основанием A. x - сумма углов α и β, выраженных в градусах. Какое максимальное целое значение может принимать x?
Задачу решили:
147
всего попыток:
213
Вы пошли в супермаркет за дисками. Один диск стоит 1 доллар, но при приобретении X дисков (X < 100) вы получаете скидку X %. Когда вы пришли домой, вам сказал брат: "Ты заплатил за диски наибольшую возможную сумму денег!". Сколько долларов вы заплатили?
Задачу решили:
87
всего попыток:
211
Сколько целых пар x и y удовлетворяет системе неравенств
Задачу решили:
169
всего попыток:
194
Дан ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9. Какую цифру нужно выбросить из данного ряда, чтобы наименьшее общее кратное оставшихся чисел было самым маленьким из возможных?
Задачу решили:
133
всего попыток:
301
В доме 100 этажей. Вася живет на 19-м, а Коля - на 96 этаже. Лифт в доме имеет только 2 кнопки: "+7" (подняться на 7 этажей) и "-9" (опуститься на 9 этажей). Какое минимальное количество раз должен нажать Коля на кнопку "+7", чтобы попасть к Васе на лифте.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|