img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 90
всего попыток: 103
Задача опубликована: 14.09.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?

Задачу решили: 62
всего попыток: 67
Задача опубликована: 18.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.

Задачу решили: 29
всего попыток: 36
Задача опубликована: 07.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5  максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.

+ 3
  
Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?

Задачу решили: 41
всего попыток: 115
Задача опубликована: 13.12.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.

Задачу решили: 13
всего попыток: 17
Задача опубликована: 02.08.19 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В ряду 111 ... 111 записаны 2018 единиц. Какое наибольшее количество знаков "+" или "-" можно поставить в этом ряду (не более одного знака между каждой группой единиц), чтобы полученное выражение давало в итоге 8102?

Задачу решили: 12
всего попыток: 21
Задача опубликована: 29.12.22 00:08
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: solomon

Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов.

Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа.

Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?

Задачу решили: 9
всего попыток: 15
Задача опубликована: 23.02.24 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Пусть R - луч, с вершиной в точке P(0; 0) и проходящий через точку (1013; 1001). M - это множество точек с натуральными координатами, не превосходящими 1016. Луч R начинает вращаться вокруг своей вершины P по часовой стрелке, пока на нём одновременно не окажутся как минимум 3 точки из M.

На какой угол повернулся луч R к этому моменту? В качестве ответа введите абсолютную величину тангенса этого угла.


Задачу решили: 16
всего попыток: 24
Задача опубликована: 12.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Найдите наименьший корень уравнения ax = xa, где a = 18446744073709551616/6568408355712890625.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.