img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

+ 3
+ЗАДАЧА 2000. Задача 2000+1 (Альфред Реньи, Станислав Улам)
  
Задачу решили: 18
всего попыток: 37
Задача опубликована: 25.04.20 08:00
Прислала: knop img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Алик загадал число от 1 до 2000. Стас может задавать ему вопросы, на которые Алик отвечает "да" илм "нет", но один раз может соврать, но может и не врать. Какое наименьшее число вопросов заведомо достаточно Стасу для угадывания? 

Задачу решили: 27
всего попыток: 38
Задача опубликована: 23.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.

Задачу решили: 26
всего попыток: 61
Задача опубликована: 11.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.

Задачу решили: 18
всего попыток: 36
Задача опубликована: 26.03.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021?

Сколько квадратов?

На рисунке изображён пример квадрата в точечной сетке 5x8.

Задачу решили: 26
всего попыток: 34
Задача опубликована: 19.04.21 08:00
Прислал: Vkorsukov img
Источник: Журнал "Квант"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: avilow (Николай Авилов)

Требуется сшить ковёр размерои 3х3 метра. Для этого можно использовать лоскуты материи размерами 0.5х0.5 метра и 0.5х1 метр в любом количестве, при условии, что сшитый ковёр не имеет  прямых швов от края до края ковра. Два ковра считаются разными, если в них использовано разное количество лоскутов (независимо от их расположения). Сколько разных ковров можно изготовить в этих условиях?

Задачу решили: 25
всего попыток: 48
Задача опубликована: 30.06.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: mikev

Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны.

А) Могли ли все рейтинги быть простыми числами?

Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов?

В) Какова минимальная сумма третьего и четвёртого по величине  рейтингов?

В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов.

Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.

Задачу решили: 18
всего попыток: 24
Задача опубликована: 06.08.21 08:00
Прислал: MMM img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

Вундеркинд Вася нашёл очень старый калькулятор, на котором изображались числа, но лишь на 8-ми позициях. Проверяя калькулятор на разных умножениях чисел, он вспомнил простой метод: имеется равенство N*x=111111111 (9 единиц), где х - некая цифра (N легко запоминается). Однако такое произведение не может получиться на старом калькуляторе. Такое умножение N*8 позволяло бы легко проверить находку, но к несчастью, кнопки "2","6","8" не работали! Вдруг Васю осенило проверить находку на правильность деления: М/у=N (у - тоже цифра), а заодно - и умножения N*у=М. Итак, запросто обнаружилась возможность получить работоспособный калькулятор после мелкого ремонта! Кнопку "2" Васе удалось починить почти сразу и проверить умножение (N*2)*2*2=N*8. Пусть m - количество всех разных цифр в записи числа N*8. Чему равно М+m?

Задачу решили: 23
всего попыток: 67
Задача опубликована: 13.10.21 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет.

Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?

Задачу решили: 18
всего попыток: 35
Задача опубликована: 18.02.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.