Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
277
Про натуральное число, в десятичной записи которого все цифры различны, известно, что произведение нескольких подряд стоящих начальных цифр равно произведению остальных его цифр. Найти количество чисел с таким свойством.
Задачу решили:
71
всего попыток:
74
Пость m и n - натуральные числа такие, что m2-n!=2016. Найти максимум m+n.
Задачу решили:
44
всего попыток:
128
Найдите количество различных пар натуральных чисел m и n таких, что 1/m + 1/n = 1/100000.
Задачу решили:
47
всего попыток:
69
Для пяти натуральных чисел n1,>n2>n3>n4>n5 таких, что Найти сумму всех ni всех возможных решений.
Задачу решили:
47
всего попыток:
94
Каждый Флибс является Флобсом. Половина всех Флобсов являются Флибсами, и половина всех Флубсов является Флобсами. Найдено 30 Флубсов и 20 Флибсов, среди которых ни один Флубс не является Флибсом. Как много среди найденных Флобсов не являются ни Флибсами, ни Флубсами?
Задачу решили:
67
всего попыток:
76
Найдите число состоящее из 10 различных цифр (0, 1, ..., 9), которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., 10.
Задачу решили:
62
всего попыток:
140
На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом: 1. Детишки не могут одни находиться на плоту. 2. Шериф не может оставлять заключенного с остальными. 3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной. 4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек. Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.
Задачу решили:
64
всего попыток:
120
Пусть p(n) является произведением всех делителей для целого положительного n (включая 1 и n). Будем число n называть "особым", если p(n)=n2. Найдите сумму первых пяти особых чисел.
Задачу решили:
55
всего попыток:
69
Найти два разных натуральных числа m и n, таких что
Задачу решили:
106
всего попыток:
111
АБВГД х 4 --------- ДГВБА Найти АБВГД.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|