Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
16
Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске). Разрешена такая операция: если на каких-то двух досках написаны числа a и b, a≤b, то можно их заменить на числа 2a и b-a. Какое максимальное количество чисел на досках можно обнулить посредством таких операций?
Задачу решили:
6
всего попыток:
13
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0,
Задачу решили:
8
всего попыток:
10
Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки. Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым. В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении: Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).
Задачу решили:
8
всего попыток:
26
На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок. Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино.
Задачу решили:
9
всего попыток:
15
Пусть R - луч, с вершиной в точке P(0; 0) и проходящий через точку (1013; 1001). M - это множество точек с натуральными координатами, не превосходящими 1016. Луч R начинает вращаться вокруг своей вершины P по часовой стрелке, пока на нём одновременно не окажутся как минимум 3 точки из M. На какой угол повернулся луч R к этому моменту? В качестве ответа введите абсолютную величину тангенса этого угла.
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
8
всего попыток:
53
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта считается только один раз.
Задачу решили:
5
всего попыток:
15
Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным. Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения. Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты. [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
Задачу решили:
9
всего попыток:
40
Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.
Задачу решили:
8
всего попыток:
66
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура считается два раза.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|