img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 59
всего попыток: 311
Задача опубликована: 16.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?

Задачу решили: 43
всего попыток: 69
Задача опубликована: 03.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму всех целых чисел n таких, что
n2+2 | 2014n+2. ( a | b - означает, что a делит b, или a является делителем числа b)

Задачу решили: 60
всего попыток: 122
Задача опубликована: 16.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти максимальное натуральное число n такое, что n7+1 делится на n+7.

Задачу решили: 37
всего попыток: 74
Задача опубликована: 19.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.

Задачу решили: 37
всего попыток: 58
Задача опубликована: 21.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.

Задачу решили: 81
всего попыток: 126
Задача опубликована: 06.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.

Задачу решили: 40
всего попыток: 242
Задача опубликована: 09.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации.

Когда приходит школьник 1, то он открывает все шкафчики.

Школьник 2 закрывает каждый 2-й шкафчик.

Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает.

Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. 

Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру.

В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?

Задачу решили: 132
всего попыток: 145
Задача опубликована: 09.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: levvol

Известно, что (TWO)2=THREE, одинаковым буквам соответствуют одинаковые цифры, разным - разные. Чему равно TWO?

Задачу решили: 49
всего попыток: 99
Задача опубликована: 30.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех возможных значений k таких, что

2k+3m+1=6n, все k, m и n - целые.

Задачу решили: 45
всего попыток: 58
Задача опубликована: 01.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Random (Руслан Головин)

Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.