Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
75
Найдите сумму всех натуральных n > 1 для которых n3 − 3 делится на n − 1.
Задачу решили:
35
всего попыток:
108
Друзья пришли в гости и их рассадили по столам. За половиной столов сидело по 5 друзей, в за второй половиной столов по x. Когда всех друзей опросили сколько за столом сидит их друзей, то в среднем получилось 16. Найдите x.
Задачу решили:
32
всего попыток:
54
Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно: p3n+1+pn+1=Np.
Задачу решили:
54
всего попыток:
111
Найти сумму всех целых n таких, что n2+2n+2 является делителем n3+4n2+4n-14.
Задачу решили:
55
всего попыток:
68
На дне рождения присутствовало 100 гостей. Первому достался кусок торта размером 1%, второму 2% от оставшейся части, третьему - 3% от оставшейся части и так далее. Какой по счету гость получил наибольший кусок?
Задачу решили:
38
всего попыток:
53
±(x-1)±(x-1)±(x-1)±...±(x-1)=2018 (выражение x-1 встречается 2018 раз). Найти количество целых решений?
Задачу решили:
36
всего попыток:
80
Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).
Задачу решили:
33
всего попыток:
52
На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.
Задачу решили:
41
всего попыток:
43
1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.
Задачу решили:
15
всего попыток:
16
Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|