img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 115
Задача опубликована: 17.08.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления).

Чему равен миллионный член этой последовательности?

Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

Задачу решили: 23
всего попыток: 117
Задача опубликована: 09.11.16 08:00
Прислал: TALMON img
Источник: По мотивам задачи "Представляем число"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите наименьшее натуральное число, представимое в виде суммы 10-и различных натуральных слагаемых с одинаковой суммой цифр и в виде суммы 11-и различных натуральных слагаемых с одинаковой суммой цифр.

Задачу решили: 43
всего попыток: 86
Задача опубликована: 10.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько есть чисел, состоящих из цифр от 1 до 9 (каждая цифра входит 1 раз), которые делятся нацело на 99?

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 26
всего попыток: 33
Задача опубликована: 01.05.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2156.
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: forest (Александр Куц)

Определителем таблицы из 9-и чисел:
a b c
d e f
g h i
называется значение выражения:
a*e*i + b*f*g + c*d*h – c*e*g – a*f*h – b*d*i.

Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.

Задачу решили: 20
всего попыток: 48
Задача опубликована: 22.12.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

7 первых натуральных чисел, кратных 7-и, расположили в каком-то произвольном порядке в одну строку без пробелов, например так: 7142128354249.

Соединив первую и последнюю цифры, получили замкнутую цепочку из 13-и цифр (смотрите рисунок).

Числа по кругу 3

Затем разъединили какие-то две соседние цифры и снова натянули цепочку в одну строку. Получилось 13-значное число. На рисунке это число: 2835424971421.

Какое наименьшее возможное число?

Замечание: Наши цифры как игрушка «Ванька-встань-ка» - сколько бы их ни поворачивать, они всегда смотрят на нас вертикально.

Задачу решили: 20
всего попыток: 60
Задача опубликована: 10.08.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
1. n не имеет простых делителей, отличных от 3, 7, 13.
2. Существует ровно 22 решения в целых числах уравнения:
1/x + 1/y = 1/n (0 < x < y).

Задачу решили: 21
всего попыток: 41
Задача опубликована: 23.01.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите наибольшее натуральное число, имеющее ровно 5 различных трёхзначных делителей и не имеющее собственных делителей большей значности.

Задачу решили: 18
всего попыток: 27
Задача опубликована: 23.06.23 08:00
Прислал: TALMON img
Источник: По мотивам задачи 505
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

В двух стаканах находится n и m мл воды, где 0<n<m и n+m≤200. Разрешена такая операция: количество воды в стакане можно удвоить, переливая из другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить один стакан. Найдите число пар целых чисел n и m, для которых цель может быть достигнута.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.