Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
659
В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров. Рассмотрим три дерева, стояших в точках A, B и C. Какое минимально возможное положительное значение угла ABC в градусах?
Задачу решили:
30
всего попыток:
380
Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3.
Задачу решили:
8
всего попыток:
185
При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений? [Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°] Пример искомого положения можно наблюдать ровно в 1:12:00.
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.
Задачу решили:
4
всего попыток:
53
Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?
Задачу решили:
5
всего попыток:
14
Если на лист "тетрадки в клеточку" положить квадрат со стороной 6, то он захватит какую-то фигуру из нескольких целых клеток (например, как показано на рисунке). Сколько может быть таких неконгруэнтных фигур? Считаются только максимальные фигуры: если к фигуре можно добавить хотя бы одну целую клетку (быть может), используя поворот и/или сдвиг квадрата по листу, то такая фигура не максимальная. Фигура на рисунке, очевидно, не максимальная. Такие не считаем. В «подробном» решении следует показать все фигуры, либо как-то ясно их описать (например, используя шахматную терминологию).
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
8
всего попыток:
10
Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки. Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым. В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении: Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).
Задачу решили:
8
всего попыток:
53
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта считается только один раз.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|