Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
64
Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?
Задачу решили:
33
всего попыток:
52
Длины сторон треугольника равны 7, 8, 13 см. На большей и меньшей сторонах внешним образом построены правильные треугольники. Найти расстояние между центрами правильных треугольников. Ответ введите в миллиметрах, округлив до ближайшего целого числа.
Задачу решили:
25
всего попыток:
49
Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.
Задачу решили:
34
всего попыток:
50
Внутри окружности расположены 2 квадрата площадью 8 и 3. Точки Т, М, Д, Е лежат на окружности, точка А – общая у квадратов (см. рисунок). Чему равен минимальный целочисленный радиус круга, в который можно поместить этот рисунок?
Задачу решили:
29
всего попыток:
64
В примере на умножение
(В честь 75-летнего юбилея.)
Задачу решили:
34
всего попыток:
47
В десятичной записи квадраты натуральных чисел a, b, c, d содержат в разрядах сотен и десятков соответственно 0 и 2, 2 и 4, 4 и 6, 6 и 8. Чему равно минимальное значение a+b+c+d?
Задачу решили:
17
всего попыток:
75
В правильном целочисленном треугольнике АВС есть такая точка внутри, что целочисленные расстояния a, b, c до его вершин образуют арифметическую прогрессию и НОД(a,b,c) =1. Найти сторону третьего по величине такого треугольника.
Задачу решили:
14
всего попыток:
151
Шестиугольник из 54 равных правильных треугольников разрезать по линиям сетки на три конгруэнтных n–угольника. Какие различные значения может принимать n? В качестве ответа укажите среднее арифметическое значение n в виде несократимой дроби p/q.
Задачу решили:
31
всего попыток:
37
В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ. Найти отношение площадей квадратов KL MN и DPRQ.
Задачу решили:
23
всего попыток:
77
Ломаная, соединяющая середины противоположных сторон правильного шестиугольника со звеньями от 1 до 6 и углами между ними π/3, делит шестиугольник на две части (смотрите рисунок). Найти отношение площади меньшей части к большей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|