img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 53
Задача опубликована: 01.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Плоская металлическая фигура имеет форму трапеции. Докажите, что её центр тяжести лежит на отрезке, соединяющем середины оснований трапеции. Выясните, в каком отношении (меньшее число к большему) центр тяжести трапеции делит этот отрезок, если основания трапеции равны 1 и 2.

Задачу решили: 19
всего попыток: 36
Задача опубликована: 19.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?

Задачу решили: 26
всего попыток: 46
Задача опубликована: 10.06.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Правильный шестиугольник со стороной 6, разбит на единичные треугольники, и отмечены вершины всех единичных треугольников.

Шестиугольники на точечной решетке

Найти число всех правильных шестиугольников, которые можно построить на заданных точках. Три из них изображены на рисунке.

Задачу решили: 50
всего попыток: 65
Задача опубликована: 12.06.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты.

Ковер Серпинского

Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского? 

Задачу решили: 32
всего попыток: 85
Задача опубликована: 08.07.19 13:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка.

Прямоугольник в квадрате

Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?

Задачу решили: 43
всего попыток: 50
Задача опубликована: 15.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Найдите четырехзначное число, удовлетворяющее условию:
\sqrt{\frac{\overline{abcd}}{a+b+c+d}}=\overline{ab,cd} , где каждая буква в выражении \overline{klmn,pq}- это цифра, а вместе они образуют десятичное число.

Задачу решили: 42
всего попыток: 46
Задача опубликована: 26.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Вычислите значение выражения \frac{lg 1\frac{1}{10}}{lg 10 \cdot lg 11}+\frac{lg 1\frac{1}{11}}{lg 11 \cdot lg 12}+...+ \frac{lg 1\frac{1}{99}}{lg 99 \cdot lg 100.

 

Задачу решили: 39
всего попыток: 75
Задача опубликована: 09.08.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Четыре равносторонних треугольника расположены внутри большого квадрата так, что образовался еще один, малый, квадрат.

Треугольники в квадрате

Найдите сумму площадей этих четырех равносторонних треугольников, если сумма площадей большого и малого квадратов равна 64√3.

Задачу решили: 38
всего попыток: 54
Задача опубликована: 11.09.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В четырехугольнике ABCD точки K, L, M и N - точки пересечения медиан треугольников  ABC, BCD, ACD и ABD соответственно. Найдите площадь четырехугольника ABCD, если площадь четырехугольника KLMN равна 12.

Задачу решили: 13
всего попыток: 30
Задача опубликована: 18.09.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке.

Плетёнка 5х5

Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.