img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "45 делителей" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 8
всего попыток: 24
Задача опубликована: 21.09.09 08:30
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

При игре в дартс участники метают три коротких дротика в мишень, разделенную на двадцать равных секторов, которые пронумерованы числами от 1 до 20.

Количество заработанных очков зависит от того, куда дротик воткнулся. Попадание дротика за пределами внешнего красно-зеленого кольца  не приносит очков. Попадание дротика в черный или желтый сектор внутри этого кольца приносит очки в соответствии с номером сектора. Внешнее красно-зеленое кольцо означает удвоение числа сектора, а внутреннее  - утроение. Два концентрических круга в центре мишени образуют "яблочко". Наружный зеленый круг дает 25 очков, а внутренний красный - 50. Он считается двойным (25x2=50).

Существует несколько вариантов игры. В самом распространенном из них игроки в начале игры имеют 301 или 501 очко, а затем последовательно вычитают заработанные очки. Выигрывает тот, у кого останется ровно ноль очков. Однако победа засчитывается только в том случае, если последний бросок, сводящий число очков к нулю, был "двойным", то есть попал во внешнее красно-зеленое кольцо или в красное "яблочко". В противном случае, а также когда после серии из трех бросков получается отрицательная сумма очков или единица, вся серия не засчитывается, и счет остается прежним.

Положение, при котором участник может завершить игру, называют "чекаут" (англ. checkout). Максимальный чекаут возможен при 170 очках: T20 T20 D25 (два попадания с утроением в сектор 20 и одно попадание в красное яблочко).

Есть ровно 11 способов окончить игру при шести очках:

D3   
D1  D2   
S2  D2   
D2  D1   
S4  D1   
S1  S1  D2
S1  T1  D1
S1  S3  D1
D1  D1  D1
D1  S2  D1
S2  S2  D1

Обратите внимание, что серии D1 D2 и D2 D1 считаются различными, поскольку последние броски с удвоением у них различны. Однако комбинации S1 T1 D1 и T1 S1 D1 считаются  одинаковыми. Кроме того, мы не учитываем промахи. D3 считается тем же исходом, что и 0 D3 или 0 0 D3.
Всего существует 42336 различных способов завершить игру. При оставшихся 6 очках можно завершить игру 11 способами, при 8 - 22 способами.
А при каком количестве очков можно завершить игру наибольшим числом способов?

Задачу решили: 10
всего попыток: 36
Задача опубликована: 24.09.09 10:03
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Изучим целые положительные решения уравнения
1/x + 1/y =1/n

при различных натуральных n.
Для  n = 4 уравнение будет иметь ровно три различных решения:
1/5 + 1/20 = 1/4
1/6 + 1/12 = 1/4
1/8 + 1/8 = 1/4

Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Замечание: Эта задача - существенно усложненная версия задачи 197. Решить ее "в лоб" вряд ли удастся.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 28.09.09 09:12
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим четырехзначные простые числа с повторяющимися цифрами. Ясно, что все цифры не могут быть одинаковы: 1111 делится на 11, 2222 делится на 22, и т.д. Но есть девять четырехзначных простых чисел, содержащих три единицы:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
Обозначим через M(n, d) максимально возможное количество повторяющихся цифр в n-значном простом числе, где d - повторяющаяся цифра. Пусть N(n, d) - количество таких чисел, а S(n, d) - их сумма.
Тогда M(4, 1) = 3 - максимальное количество единиц в четырехзначном простом числе, всего существует N(4, 1) = 9 таких чисел, а их сумма равна S(4, 1) = 22275. Оказывается, что при d = 0 в четырехзначном простом числе может быть не более M(4, 0) = 2 нулей, и N(4, 0) = 13.
Таким образом, мы получим следующие результаты для четырехзначных простых чисел:

Digit, d M(4, d) N(4, d) S(4, d)
0 2 13 67061
1 3 9 22275
2 3 1 2221
3 3 12 46214
4 3 2 8888
5 3 1 5557
6 3 1 6661
7 3 9 57863
8 3 1 8887
9 3 7 48073

Найдите сумму всех S(n, d) для 3 ≤ n ≤ 10 и 0 ≤ d ≤ 9.

Задачу решили: 17
всего попыток: 46
Задача опубликована: 07.10.09 16:33
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
Аналогично, убывающим числом будем называть такое натуральное число, цифры которого не возрастают слева направо, например 864431.
Оказывается, что возрастающие числа встречаются реже, чем убывающие. Так, среди первых ста натуральных чисел имеется 54 возрастающих и 64 убывающих (18 чисел, состоящих из одинаковых цифр, являются сразу же и возрастающими, и убывающими), а в первой тысяче натуральных чисел - 219 возрастающих и 283 убывающих.
Обозначим через R(n) отношение количества убывающих чисел к количеству возрастающих среди первых n натуральных чисел. Например, оказывается, что R(11)=11/10, R(1127)=11/9.
Найти R(n), где n – число, состоящее из 111 единиц (Оказывается, это целое число).

(Можно решить при помощи карандаша и бумаги)
Задачу решили: 12
всего попыток: 14
Задача опубликована: 12.10.09 12:40
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На рисунке изображена прямоугольная полоска из восьми выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее трех клеток, а черные – не менее двух. Как видно из рисунка, полоску из восьми клеток можно раскрасить таким образом четырнадцатью способами.

 


Сколькими способами можно раскрасить полоску из 50 клеток, следуя тем же правилам?

Задачу решили: 10
всего попыток: 12
Задача опубликована: 19.10.09 15:11
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

 

Замечание: Это более сложный вариант задачи 114.

Как и в задаче 114, будем рассматривать прямоугольные полоски, состоящие из n выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее mr клеток, а черные – не менее mb.

 

Обозначим через F(mr, mb,n) число способов, которым такая полоска может быть построена, например F(3, 2, 8)=14 (см. рисунок).

 

 

Кроме того, F(3, 2, 34)= 856506 и F(3, 2, 35)= 1309554.

Это означает, что n=35 – минимальное значение, при котором функция F(3, 2,n) превосходит миллион.

Аналогично, F(5, 3, 46) = 849735 и F(5, 3, 47)= 1172897, и 47 – первое значение n, при котором F(5, 3, n) больше миллиона.

Найдите минимальное значение n, при котором F(111, 100, n) > 1 000 000.

 

Задачу решили: 12
всего попыток: 34
Задача опубликована: 16.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 200
Лучшее решение: Alias_Prudaev

На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?

Задачу решили: 13
всего попыток: 34
Задача опубликована: 19.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На плоскости нарисована пятиконечная звезда  с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?

Задачу решили: 9
всего попыток: 19
Задача опубликована: 04.01.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.