img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2
всего попыток: 2
Задача опубликована: 18.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В этой задаче мы будем рассматривать конечные последовательности натуральных чисел, например, (2,4,6), (2,6,4), (10,6,15,6) и (11).
Наибольшим общим делителем последовательности (gcd) будем называть наибольшее натуральное число, являющееся делителем каждого члена последовательности. Например, gcd(2,6,4) = 2, gcd(10,6,15,6) = 1 и gcd(11) = 11.
Наименьшим общим кратным последовательности (lcm) будем называть наименьшее натуральное число, кратное каждому члену последовательности, например, lcm(2,6,4) = 12, lcm(10,6,15,6) = 30 и lcm(11) = 11.
Обозначим через f(G, L, N) количество последовательностей длины N у которых gcd ≥ G и lcm ≤ L. Например:
f(10, 100, 1) = 91.
f(10, 100, 2) = 327.
f(10, 100, 3) = 1135.
f(10, 100, 1000) mod 1014 = 3286053.
Здесь a mod b означает остаток от деления a на b.
Найдите f(106, 1012, 10100) mod 1014.

Задачу решили: 9
всего попыток: 18
Задача опубликована: 02.12.13 08:00
Прислал: Rep img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: mikev

Степени двойки, как известно, редко начинаются с цифры 9 (см. задачу 316). Так, первый раз это случается только для 53-й степени (253 = 9007199254740992). С двух девяток подряд начинается 93-я степень, а с трех девяток - только 2621-я.

Найдите минимальный показатель степени n такой, что десятичная запись числа 2n начинается с десяти девяток подряд.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 16.12.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Космонавты осваивают планету, имеющую радиус r. Они построили две станции на полюсах планеты, имеющих координаты (0,0,r) и (0,0,-r) в системе координат, связанной с центром планеты.
Также они установили несколько промежуточных станций, расположенных во всех точках поверхности планеты, имеющих целые координаты.


Все станции связаны дорогами, проложенными по кратчайшей дуге большого круга, однако путь между станциями требует больших затрат, равных (d/(π r))2, где d – протяженность дороги между двумя станциями. Если маршрут включает посещение нескольких промежуточных станций, затраты на все путешествие равны сумме затрат на отдельных участках.
Маршрут, проложенный между полюсами планеты и не проходящий через промежуточные станции, будет иметь длину πr, а затраты будут равны 1. Если же включить в маршрут одну промежуточную станцию с координатами (0,r,0), затраты уменьшатся вдвое:   (½πr/(πr))2+(½πr/(πr))2=0,5.
Будем называть оптимальным маршрут между полюсами планеты, если он требует минимальных затрат.
Например, при r=7 оптимальный маршрут будет проходить через 6 промежуточных станций, а затраты составят примерно 0,1784943998…
Подсчитайте, сколько промежуточных станций посетят космонавты, путешествуя по оптимальному маршруту между полюсами планеты с r=33333.

Задачу решили: 0
всего попыток: 3
Задача опубликована: 30.12.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим множества, состоящие из взаимно простых натуральных чисел, не превышающих n.
Обозначим через Co(n) максимально возможную сумму элементов такого множества.
Например, Co(10)=30, и это значение достигается для множества {1, 5, 7, 8, 9}.
Можно проверить, что Co(30) = 193 и Co(100) = 1356.
Найдите Co(1000000).

Задачу решили: 2
всего попыток: 4
Задача опубликована: 20.01.14 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Циклическим называют натуральное число из n знаков, обладающее следующим интересным свойством: если умножить его на 1, 2, 3, 4,…, n-1 или n, то произведение будет состоять из тех же цифр, но переставленных циклически.

Если не считать тривиального числа 1, наименьшим циклическим числом будет 142857:
142857 × 1 = 142857
142857 × 2 = 285714
142857 × 3 = 428571
142857 × 4 = 571428
142857 × 5 = 714285
142857 × 6 = 857142

Если, как это обычно принято, не писать нулей в старших разрядах, то больше циклических чисел мы не обнаружим. Однако если начинать с нулей, можно найти их бесконечно много, например, следующим циклическим будет 16-значное число 0588235294117647:

0588235294117647 × 1 = 0588235294117647
0588235294117647 × 2 = 1176470588235294
0588235294117647 × 3 = 1764705882352941
...
0588235294117647 × 16 = 9411764705882352

Найдите наибольшее циклическое число, которое начинается цифрами 00000000123 и заканчивается цифрами 56789 (то есть число вида 00000000123...56789, где многоточие означает некоторое неизвестное количество цифр). В качестве ответа укажите сумму его цифр.

Задачу решили: 5
всего попыток: 13
Задача опубликована: 27.01.14 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

В отеле "Инфинити" бесконечно много этажей, на каждом этаже бесконечно много комнат, а к администратору выстроилась бесконечно длинная очередь. И этажи, и комнаты на каждом этаже, и посетители перенумерованы подряд натуральными числами (1, 2, 3, …).
В начальный момент все комнаты отеля свободны. Чтобы поселить очередного гостя с номером n,  администратор выбирает самый нижний этаж, на котором либо пока никто не живет, либо последний поселившийся имеет такой номер m, что m+n является квадратом целого числа. Новый гость получает первый свободный номер на выбранном этаже.
 Гость №1 получает комнату №1 на первом этаже, поскольку на нем еще никто не живет.
 Гостя №2 нельзя поселить в комнате №2 на первом этаже, поскольку сумма 1+2=3 не является квадратом. Этого гостя можно поселить на втором, пока еще пустом этаже, в комнате №1.
 Гость №3 получает комнату №2 на первом этаже, поскольку сумма 1+3=4 является квадратом.
Таким образом, каждый гость получит свою комнату в отеле.
Обозначим через P(f, r) номер посетителя, живущего в комнате r на этаже f.
Тогда:
P(1, 1) = 1
P(1, 2) = 3
P(2, 1) = 2
P(10, 20) = 440
P(25, 75) = 4863
P(99, 100) = 19454
Найдите сумму P(f, r) для всех f и r, таких что f2 + r2 = 14234886498625 .

Задачу решили: 1
всего попыток: 12
Задача опубликована: 03.02.14 08:00
Прислал: TALMON img
Источник: Задача 84 раздела "Математика".
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. Число N - наименьшее число кусков, на которое ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями.

Сколько существует различных разбиений пирога на таких N кусков?

Замечания.

1. Нужно считать только разбиения на куски, кратные 1/(7*8*9) части пирога.

2. Если из какого-то разбиения можно скомпоновать нужные части несколькими способами, то это разбиение всё равно считается только один раз.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.03.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2141 раздела МАТЕМАТИКА
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколькими различными способами можно разрезать шестиугольник из 54-х одинаковых равносторонних треугольников по линиям сетки на три конгруэнтных n–угольника?

Шестиугольник и 54 треугольника

Разрезания, являющиеся симметрическими отображениями друг друга, считать только один раз. Т.е., нужно найти количество «неконгруэнтных разрезаний».

Задачу решили: 3
всего попыток: 5
Задача опубликована: 01.08.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите минимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется:

0 < a < b < c < d < e < f < g

и

1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.