Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
87
всего попыток:
141
В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей. Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей.
Задачу решили:
90
всего попыток:
208
Составьте число из идущих подряд простых чисел: 23571113171923... Найти сумму цифр находящихся на местах 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001.
Это открытая задача
(*?*)
В матрице размера 10x10 в каждой строке стоят целые числа от 0 до 9, при этом числа в строках не повторяются. Найти наибольший определитель такой матрицы.
Задачу решили:
26
всего попыток:
57
Рассмотрим такие диофантовы уравнения: x2-Dy2=1. Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое: 6492-13*1802=1. Легко показать, что для D - полного квадрата решений не существует. Рассмотрим минимальные решения D <= 10: 32 - 2*22=1; 22 - 3*12=1; 92 - 5*42=1; 52 - 6*22=1; 82 - 7*32=1; 32 - 8*12=1; 192 - 10*62=1. Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10. Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.
Задачу решили:
22
всего попыток:
151
На шахматную доску расставляются различные фигуры - кони, слоны, ладьи, ферзи и короли, при этом каждая фигура присутствует хотя бы один раз и ни одна фигура не находится под боем остальных. Какое максимальное количество фигур можно разместить таким образом?
Задачу решили:
45
всего попыток:
61
Найти минимальное n, такое что в записи n! встречаются все двухзначные числа.
Задачу решили:
9
всего попыток:
95
Рассмотрим игру «монополия». Игровое поле следующее:
Движение происходит следующим образом: каждый игрок своим ходом кидает два 6-гранных кубика, и сдвигает фишку на число клеток в сумме выпавших на кубиках. Исключением является случай, когда игрок три раза подряд выкидывает дубль (одинаковые числа на кубиках), в таком случае он попадает на клетку тюрьмы (JAIL). Также, если игрок сдвинув фишку попадает на «G2J», то он перемещается в тюрьму. Игрок начинает с клетки GO и каждый ход бросает пару кубиков и свдигает фишку на сумму чисел выпавших на кубиках по часовой. Если бы не было дополнительных правил — ожидаемым было бы, что вероятности попадения на каждую клетку после броска равна 1/40. Но попадания на клетки G2J(Go to jail, отправляйтесь в тюрьму), CC(извещение) и CH(шанс) изменяет это распределение. Также существует правило, согласно которому если игрок выкидывает три раза дубль (одинаковые значения на кубиках), то вместо третьего хода он попадает в тюрьму. Вначале игры все карты CC и CH перетасованы. Когда игрок становится на одну из таких клеток верхняя карта колоды снимается и после использования кладется под низ. В каждой стопке по 16 карт, часть из которых содержит предписания о перемещении на какую-то из клеток карты, остальные нам не важны. Вот эти карты:
Ваша задача определить вероятность закончить ход на каждой из клеток после очередного броска кубиков. Очевидно что вероятность для Jail наибольшая, G2J нулевая. Считается что игрок не задерживается в тюрьме. Пронумеруем все клетки от 0(GO) до 39(H2) и найдем вероятности для каждой клетки. Три макимальные вероятности получаются для клеток JAIL(10), 6.24%; E3(24), 3.18% и GO(0), 3.09%. В какой-то момент вы потеряли кубик и потому решили обходиться для игры монеткой, подкидывая ее три раза и считая что орел - 1, а решка - 2. При этом "дублем" считается выпадения все три раза либо орла, либо решки. Найдите при таком способе игры 5 наиболее популярных клеток и в ответе укажите сумму их номеров.
Задачу решили:
6
всего попыток:
16
В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.
Задачу решили:
15
всего попыток:
172
За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|