Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
2
В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
Задачу решили:
10
всего попыток:
13
Рассмотрим число 1680=24×3×5×7=2×2×2×2×3×5×7, Найдите сумму простых множителей числа G(4444).
Задачу решили:
2
всего попыток:
5
Лёва и Петя поспорили, у кого лучше память, и решили проверить. Для этого они обзавелись генератором случайных чисел, настроили его на получение случайных чисел от 1 до 10 и стали соревноваться, кто больше чисел запомнит. По условию игры участник получает очко, если очередное число все еще хранится в его памяти. Побеждает тот, кто набрал больше очков. По ходу дела выяснилось, что и Лёва, и Петя могут удержать в голове не более пяти разных чисел. Если игрок уже помнит пять чисел, то чтобы запомнить следующее, не содержащееся к этому моменту в его памяти, он вынужден забыть одно из имеющихся. Однако оказалось, что забывание происходит несколько по-разному:
В начале соревнования память игроков свободна. Вот пример начала игры:
Обозначим количество очков, которые Лёва и Петя набрали после 50 туров через L и P, соответственно. Найдите математическое ожидание величины (L-P)2, результат умножьте на 108 и округлите до ближайшего целого.
Задачу решили:
2
всего попыток:
3
Английский математик Джон Хортон Конвей изобрел множество математических развлечений, доставляющих не только удовольствие, но и пищу для серьезных размышлений. Одно из его изобретений – язык программирования FRACTRAN, о котором пойдет речь в данной задаче.
Память данных виртуальной машины языка FRACTRAN содержит одно единственное целое число, а программа представляет собой упорядоченную последовательность рациональных дробей. На каждом шаге выполнения программы машина просматривает эти дроби одну за другой слева направо и умножает каждую из них на число из памяти, пока произведение не окажется целым. Полученное целое число записывают в память вместо предыдущего. Вот, например, FRACTRAN-программа, предложенная Конвеем для получения последовательности простых чисел: 17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1. Записав в память исходное значение 2, получим в памяти ряд чисел в следующей последовательности: 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132, 116, 308, 364, 68, 4, 30, ..., 136, 8, 60, ..., 544, 32, 240, ... Оказывается, степени двойки в полученной последовательности встречаются только с простыми показателями: 22, 23, 25, ..., и можно проверить, что данная последовательность будет содержать в порядке возрастания все степени двух с простыми показателями. Заметим, что для получения 22 из исходного числа 2 потребовалось 19 шагов программы, и при этом три раза происходило умножение на дробь 13/11. А сколько раз придется выполнить умножение на 13/11 при переходе от исходного числа 2 к 2111119?
Задачу решили:
4
всего попыток:
4
Обозначим через N(i) наименьшее натуральное число n, факториал которого n! делится на (i!)1234567890 . Сумма N(i) для всех составных натуральных i, не превышающих 1000, равна 520804933959105. Найдите сумму N(i) для всех составных натуральных i, не превышающих 1 000 000. В качестве ответа укажите 18 младших разрядов результата.
Задачу решили:
1
всего попыток:
4
Широко известна игра, где один из участников задумывает целое число, а другой пытается его угадать, задавая вопросы. В этой задаче исследуется вариант такой игры, когда задумывают натуральное число из промежутка [1,n], а в качестве вопросов разрешается называть натуральные числа из этого же интервала. При этом стоимость каждого вопроса равна названному числу. Допускаются ответы трех видов:
Требуется определить задуманное число и при этом минимизировать суммарную стоимость вопросов (в дальнейшем – цена игры). Для данного числа n назовем стратегию оптимальной, если она минимизирует цену игры для самого неудачного задуманного числа. Например, при n=3 наилучшим первым ходом будет число "2". После этого при любом ответе можно будет точно определить задуманное число, поэтому больше вопросов не потребуется, и цена игры будет равна 2. Если n=8, мы могли бы выбрать в качестве стратегии "бинарный поиск". Если первым ходом мы назовем число "4", а задуманное число будет больше, чем 4, нам потребуется еще два вопроса. Пусть вторым ходом мы называем число "6". Если задуманное число больше, чем 6, нам потребуется еще один ход, скажем, "7", и цена игры составит 4+6+7=17. Мы можем существенно улучшить нашу стратегию для n=8, если первым ходом назовем число "5". Если задуманное число больше, чем 5, то вторым ходом мы можем назвать число "7", и этого будет достаточно для нахождения задуманного. Тогда цена игры составит 5+7=12. Если же задуманное число меньше, чем 5, то для его определения достаточно вторым и третьим ходом назвать "3" и "1", а цена игры составит 5+3+1=9. Поскольку 12 > 9, в худшем случае цена игры при этой стратегии будет равна 12. Получается, что данная стратегия более выгодна, чем предыдущая, и оказывается, что она оптимальна, то есть никакая другая стратегия не может гарантировать для n=8 результат меньший, чем 12. Пусть C(n) – максимальная цена игры, которая может получиться для оптимальной стратегии в худшем случае. Тогда C(1) = 0, C(2) = 1, C(3) = 2 и C(8) = 12. Можно подсчитать, что C(100) = 400. Найдите С(500000).
Задачу решили:
0
всего попыток:
0
На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой. Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих на одной с ней вертикали, и N-1 шашек, стоящих на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.
Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода. Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1. Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере. Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0). Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253. Найдите сумму T(k!) для 1≤k≤12.
Задачу решили:
2
всего попыток:
9
Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными. Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32). Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения: 11 = 2 + 9 = (21×30 + 20×32) 11 = 8 + 3 = (23×30 + 20×31) Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2. Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641. Найдите сумму простых q < 1000000, для которых P(q)=2.
Задачу решили:
6
всего попыток:
8
Рассмотрим нечетное число 225 = 32 × 52.
Задачу решили:
8
всего попыток:
9
В этой задаче мы будем рассматривать натуральные числа, имеющие ровно три простых делителя. Например, число 240 имеет простые делители 2,3 и 5. Это наибольшее число, не превышающее 250, имеющее эти три простых делителя и не имеющее других. Для различных простых чисел p, q и r обозначим через M(p,q,r,N) наибольшее натуральное число, не превышающее N, которое делится на p, q и r, но не имеет других простых делителей. Если таких чисел нет, будем считать, что M(p,q,r,N)=0. Например:
Пусть S(N) – сумма различных значений M(p,q,r,N) для всех сочетаний p, q и r. Так, S(250)= 4588. Найдите S(10 000 000).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|