img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 3
всего попыток: 11
Задача опубликована: 28.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

 

Рассмотрим построение последовательности графов Серпинского:

  • Граф Серпинского первого порядка S1 представляет собой равносторонний треугольник (три вершины и три соединяющих их ребра).
  • Граф Серпинского  Sn+1 порядка n+1 представляет собой объединение трех графов Sn, имеющих попарно общую вершину, как показано на рисунке:

 eu312-1.gif

Пусть C(n) — количество циклов, проходящих через каждую вершину  Sn ровно один раз. Например, C(3)=8, поскольку граф  S3 позволяет построить ровно 8 подобных циклов, как показано на рисунке: 

eu312-2.gif

Легко проверить, что 

C(1) = C(2) = 1

C(5) = 71328803586048

C(10 000) mod 108 = 37652224

C(10 000) mod 710 = 221100305

(Здесь a mod b означает остаток от деления a на b.)

Найдите C(C(C(10 000))) mod 710.

 

Задачу решили: 1
всего попыток: 1
Задача опубликована: 29.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Будем вырезать из бумаги в клетку прямоугольники размером w × h клеток, где w и h – натуральные числа. Некоторые из них можно разрезать по клеточкам на две части так, что из этих частей составится новый прямоугольник другого размера.
Например, прямоугольник размером 9 × 4 клетки можно превратить в прямоугольники 18 × 2, 12 × 3 или 6 × 6, как показано на рисунке:

eu338.png
Аналогично, из прямоугольника 9 × 8 можно сделать прямоугольники размером 18 × 4 и 12 × 6 клеток.
Обозначим через F(w, h) количество различных прямоугольников, которые можно получить из прямоугольника размером w × h клеток. При этом прямоугольники с размерами a × b и b × a считаются одинаковыми, а прямоугольники, конгруэнтные исходному, не учитываются.
Тогда получим: F(2,1) = 0, F(2,2) = 1, F(9,4) = 3 и F(9,8) = 2.
Пусть G(N)=Σ F(w, h) для всех 0 < h ≤ w ≤ N.
Можно проверить, что G(10) = 55, G(103) = 971745, а G(105) = 9992617687.
Найдите ΣG(10k), где 1≤k≤12. В качестве ответа укажите 8 младших цифр результата.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 23.12.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображены пчелиные соты, каждая ячейка которых представляет собой правильный шестиугольник со стороной 1.

eu354.png

Одну из ячеек занимает пчелиная матка.
Обозначим через B(L) количество ячеек, удаленных от матки на расстояние L (в этой задаче мы будем измерять расстояния между центрами ячеек).
Считая соты достаточно большими, получим  B(√3) = 6, B(√21) = 12 и B(111 111 111) = 54.

Найдите количество таких L ≤ 3•1011, для которых B(L) = 378.

Ответ:

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.