img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч.
На рисунке показан путь луча, который прошел сквозь щель в вершине C, 11 раз отразился от зеркал и вышел из треугольника через ту же вершину C. Существует всего 2 пути, по которым луч может войти и выйти через вершину C, испытав при этом 11 отражений: один – это тот, что изображен на рисунке, а другой – направленный ему навстречу.

Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Существует 40 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал 697 раз и выйти из треугольника через ту же вершину.
Существует 9355 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 700 раз и выйти из треугольника через ту же вершину.
Сколько существует траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 100000 раз и выйти из треугольника через ту же вершину.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 20.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте.

На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932.

Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).

Задачу решили: 3
всего попыток: 4
Задача опубликована: 23.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Будем строить последовательность строк D0, D1,… Dn …следующим образом.
Пусть D0, - двухбуквенная строка "Fa". Для n, больших нуля, построим строку Dn, заменяя все вхождения символов "a" и "b" в строке Dn-1 следующим образом:
"a"  "aRbFR"
"b"  "LFaLb"
Тогда получим, что D0 = "Fa", D1 = "FaRbFR", D2 = "FaRbFRRLFaLbFR", и так далее.
Теперь предположим, что полученная строка является программой для плоттера, в которой символ "F" означает движение пера вперед на единицу, "R" – поворот на 90 градусов направо, а "L" – поворот на 90 градусов влево. Символы "a" и "b" на рисунок не влияют. Начальное положение пера – в начале координат (0,0), а начальное направление движения – вверх (0,1).
Получив на вход строку Dn, плоттер вычертит замысловатую ломаную, называемую "Дракон Хартера – Хейтуэя порядка n". Например, на рисунке ниже показан дракон D10. Если по команде "F" перо сдвигалось на один шаг, то в отмеченную голубым точку оно попало после 500 шагов. Ее координаты – (18,16).

Теперь представим, что плоттер начертил дракона 50-го порядка. На нем отметили точки  L и M, в которые перо попало, соответственно, после 1012 и 1013 шагов. Найдите расстояние |LM|. Результат округлите вниз до целого.

Задачу решили: 1
всего попыток: 2
Задача опубликована: 25.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты:


Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область.
Рассмотрим две точки на плоскости с координатами (u,v) и (x,y). Их суммой будем называть точку с координатами (u+x,v+y).
Суммой Минковского, S+T двух плоских фигур S и T будем называть множество всевозможных сумм точек, одна из которых принадлежит S, а другая принадлежит T.
Например, сумма S3 + S4 представляет собой шестиугольник, окрашенный на рисунке в пурпурный цвет.

Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?

Задачу решили: 7
всего попыток: 8
Задача опубликована: 03.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Рассмотрим замкнутые ломаные, каждая из которых
• проходит через центры всех клеток шахматной доски 4×n,
• состоит из вертикальных и горизонтальных отрезков,
• не имеет самопересечений.
На рисунке изображена одна такая ломаная на доске 4×10:
 
Обозначим через T(n) количество таких ломаных для доски 4×n.
Можно показать, что T(10) = 1517.
Найдите остаток T (1012) по модулю 108.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 14.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Существует несколько определений эллипса. Вот одно из них:
Эллипсом называется множество точек, равноудаленных от некоторой окружности и некоторой точки, лежащей внутри указанной окружности. Рисунок ниже поясняет это определение:

<page-break/>
Пусть задана окружность c с центром M(-2000,1500) и радиусом 15000, а также точка G(8000,1500). Множество точек, равноудаленных от G и c, образует эллипс e, как показано на следующем рисунке.

Рассмотрим теперь точку P с целочисленными координатами, лежащую во внешней области эллипса e, и проведем из нее прямые PS и PR, касающиеся эллипса e в точках S и R.
Подсчитайте, сколько существует на плоскости точек P с целочисленными координатами, для которых угол RPS между касательными к эллипсу  не менее 30 градусов?

Задачу решили: 2
всего попыток: 5
Задача опубликована: 02.01.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Как известно, японцы застилают полы прямоугольными матами-татами, укладывая их без зазоров и перекрытий согласно строгим традиционным правилам. Хотя в разных частях Японии размер татами различается, везде его стороны соотносятся как 2:1. Поэтому стороны японской комнаты соотносятся как целые числа  a и b, а ее площадь можно выразить как s = a × b.
Кроме того, покрытие должно быть таким, чтобы в одной точке не сходилось более трех матов. Взгляните, например, на два покрытия квадратов 4×4:

 eu256.png
Покрытие слева соответствует всем правилам, а покрытие справа недопустимо, поскольку в точке, отмеченной красным крестиком, сходятся четыре мата.
Ясно, что если площадь комнаты нечетная, ее нельзя застелить. Некоторые комнаты, даже имеющие целые стороны и четную площадь, все-таки нельзя правильным образом застелить татами. Будем называть такие комнаты недопустимыми. Обозначим через T(s) количество недопустимых комнат площади s.
Например, самая маленькая недопустимая комната имеет стороны 7 и 10. Ее площадь равна 70.  Остальные три комнаты площадью 70 (1×70, 2×35, 5×14) могут быть правильно застелены татами. Поэтому T(70)=1.
Аналогично, можно проверить, что T(1320) = 5, поскольку существует ровно пять недопустимых комнат площадью s = 1320:
20×66, 22×60, 24×55, 30×44 и 33×40.
Найдите сумму таких s, не превышающих 100 000 000, для которых T(s) ≥ 200.

Задачу решили: 3
всего попыток: 6
Задача опубликована: 09.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами:
1. Каждый разрез представляет собой отрезок, соединяющий отмеченные точки.
2. Разрезы не пересекаются, но могут иметь общие концы, соответствующие отмеченным точкам.
3. Мы будем продолжать делать разрезы, пока не останется кусков, которые можно разрезать, не нарушая правил 1 и 2.
Ясно, что по указанным правилам наш лист можно разрезать несколькими способами. Некоторые из этих способов будут симметричны или отличаться друг от друга только поворотом, но мы будем считать такие способы различными. Пусть F(M,N) – это количество способов, которыми можно разрезать прямоугольный лист размером M × N.
Например, F(1,1)=2, F(1,2)=F(2,1)=6, F(2,2)=30.
Случай M=2, N=2 проиллюстрирован рисунком:

eu270.png

Найдите остаток от деления F(25,35) на 108.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 14.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:

  • Статуя порядка n состоит из n единичных квадратов — блоков и еще одного квадрата — постамента (всего — n+1 квадрат).
  • Центр постамента находится в начале координат (x = 0, y = 0).
  • Центры всех блоков имеют положительные координаты y, так что постамент находится ниже остальных квадратов.
  • Центр масс уравновешенной статуи имеет нулевую горизонтальную координату x.

Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй.

eu275.gif

Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда  Z(6)=18, Z(10)=964, Z(15)= 360505.

Найдите ∑Z(n)  для 1 ≤ n ≤ 18.

Задачу решили: 3
всего попыток: 12
Задача опубликована: 30.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим метод кодирования черно-белых изображений при помощи квадрадеревьев для квадратного изображения размером 2N×2N  однобитовых пикселей. Сгенерируем кодирующую последовательность из нулей и единиц по следующим правилам:

  • Первый бит относится ко всему квадрату 2N ×2N
  • "0" означает ветвление дерева, и текущий квадрат 2n×2n разделяется на четыре меньших квадрата размером 2n-1×2n-1. Следующие за нулем биты содержат описание этих четырех квадратов, сначала левого верхнего, затем правого верхнего, левого нижнего и правого нижнего (именно в этой последовательности).
  • "10" означает, что данный квадрат содержит только черные пиксели;
  • "11" означает, что данный квадрат содержит только белые пиксели.

В качестве примера рассмотрим изображение размером 4×4, где цветными крестиками обозначены точки ветвления.

eu287.png  

В принципе, изображение может быть закодировано несколькими различными битовыми последовательностями, например, "001010101001011111011010101010" или "0100101111101110". Первая из этих последовательностей содержит 30 битов, а вторая – только 16, и эта длина является минимальной.

Рассмотрим теперь изображения размером 2N×2N, построенные следующим образом:

  • Пиксель с координатами x=0, y=0 соответствует левому нижнему углу изображения,
  • Если  (x-2N-1)2+(y-2N-1)2 ≤ 22N-2 , то соответствующий пиксель черного цвета,
  • Остальные пиксели - белые.

Для изображения данного типа с N=24 найдите кодирующую последовательность минимальной длины. Сколько единиц она содержит?

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.