img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 16
Задача опубликована: 04.07.09 09:14
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.

Задачу решили: 11
всего попыток: 37
Задача опубликована: 04.08.09 12:05
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 300
Лучшее решение: Anton_Lunyov

Дан список слов в приложении. Среди них есть некоторые слова-анаграммы. То есть пары слов, отличающиеся только порядком букв. Такие как СОСНА и НАСОС. Оказывается, что при некоторой подстановке букв цифрами (одинаковым буквам соответствуют одинаковые цифры, разным - разные), слова пары могут одновременно превратиться в пентагональные числа (представимы как n(3n-1)/2). Найти среди всех таких слов и соответствующих им чисел, наибольшее число.

Задачу решили: 6
всего попыток: 18
Задача опубликована: 10.09.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243.

Тот же граф можно представить следующей матрицей:

  A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -

Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.

 

Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой
wij =  wji = (69069(i - j)2(i + j))(mod 1000)

Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?

Задачу решили: 9
всего попыток: 12
Задача опубликована: 26.10.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: emm76

Заполним полоску из пяти клеток, используя черные квадраты и цветные прямоугольники: красные прямоугольники из двух клеток, зеленые прямоугольники из трех клеток, синие – из четырех и желтые из пяти клеток. Как видно из рисунка, это можно сделать шестнадцатью способами.

Сколько есть способов заполнения полоски из 50 клеток?

Задачу решили: 14
всего попыток: 14
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.



Чтобы добавить второй слой кубиков, закрывающих поверхность полученного тела, понадобится сорок шесть кубиков; для третьего слоя необходимо семьдесят восемь кубиков, а для четвертого - сто восемнадцать кубиков.

Первый слой параллелепипеда 5х1х1 также состоит из двадцати двух кубиков; аналогично первый слой в параллелепипедах 5х3х1, 7х2х1 и 11х1х1 состоит из сорока шести кубиков.

Обозначим за C(n) количество параллелепипедов, содержащих n кубиков в одном из своих слоев. Тогда С(22) = 2, С(46) = 4, С(58) = 5, С(82) = 7.

Оказывается, что сумма всех трехзначных n, для которых С(n) = 5, составляет 930.

Найдите сумму всех пятизначных n, для которых C(n) = 500.

(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили: 6
всего попыток: 25
Задача опубликована: 12.04.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 3 img
баллы: 300

Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 10.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке.

Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313.

Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи.

А сколько обратимых чисел не превышает 1021?

Задачу решили: 5
всего попыток: 13
Задача опубликована: 21.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Типография каждый день выполняет 16 заказов. Для каждого заказа необходим лист специальной бумаги формата A5.
Каждое утро бригадир открывает новый конверт, содержащий большой лист формата A1.


Он разрезает лист пополам. В результате получается два меньших листа формата A2, один из которых он снова режет пополам, и т.д., пока не получится лист формата A5.
Все неиспользованные листы он складывает обратно в конверт.
Приступая к выполнению следующего заказа, он берет из конверта наугад первый попавшийся лист. Если этот лист имеет формат A5, он сразу же идет в дело. Если же лист окажется больше, к нему применяется та же процедура "половинного деления", что и к исходному листу, пока не получится формат A5, а оставшиеся неиспользованными листы разного формата каждый раз убирают обратно в конверт.
Найдите среднее число раз в году, когда бригадир, открыв конверт, находит там ровно два листа. Считайте, что в году 249 рабочих дней, а результат округлите до целого.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 12.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое.

Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров.

Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар.

Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех).

То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n.

Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 30.08.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:

 

С учетом различных ориентаций можно насчитать шесть видов тримино:

Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом:

При этом симметричные покрытия мы считали различными.

Сколько существует подобного рода покрытий для прямоугольника 8 х 15?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.