Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
17
Натуральное число называется свободным от квадратов, если оно не делится ни на один квадрат простого числа. Например, числа 1, 2, 3, 5, 6, 7, 10, 11 свободны от квадратов, а числа 4, 8, 9, 12 - нет.
Задачу решили:
22
всего попыток:
36
Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.
Задачу решили:
9
всего попыток:
26
Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом: u(0) = 109 Найдите u(1018).
Задачу решили:
2
всего попыток:
3
Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Задачу решили:
11
всего попыток:
31
Рассмотрим числа, обладающие следующими тремя свойствами:
Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208. Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.
Задачу решили:
6
всего попыток:
15
Для числового множества A обозначим через sum(A) сумму его элементов. Вычислим суммы для всех 20 трехэлементных подмножеств множества B: Теперь рассмотрим множество S, состоящее из 120 элементов:
Задачу решили:
14
всего попыток:
17
Для натурального числа n обозначим через σ2(n) сумму квадратов его делителей. Например,
Задачу решили:
16
всего попыток:
18
Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n. 5,4,2,1 Ровно две из них начинаются с простых чисел.
Задачу решили:
5
всего попыток:
6
k-значное натуральное число называется сбалансированным, если сумма его первых [k/2] цифр его равна сумме последних [k/2] цифр. Здесь x обозначает округление вверх, например, [π] = 4 и [5] = 5.
Задачу решили:
3
всего попыток:
18
Пусть A и B - битовые последовательности, составленные из нулей и единиц. Теперь предположим, что затраты на передачу нуля составляют 1 копейку, а затраты на передачу единицы - 4 копейки. Тогда стоимость вышеприведенного кода составит 2+6+9+6+9+16=48 копеек. Это далеко не самый дешевый код. Самый дешевый код длины 6 стоит 35 копеек и может быть реализован двумя способами: А сколькими способами может быть реализован самый дешевый код длиной 946583626
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|